簡易檢索 / 詳目顯示

研究生: 彭渙婷
Huan-Ting Peng
論文名稱: 分析在類星體風中形成塵埃的成分比例
Determining the Composition of Dust Formed in Quasar Winds
指導教授: 康逸雲
Francisca Kemper
傅谷石
Sebastien Foucaud
李沃龍
Lee, Wo-Lung
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 80
中文關鍵詞: 類星體灰塵成分
英文關鍵詞: Quasar, Dust, Composition
論文種類: 學術論文
相關次數: 點閱:155下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 類星體環境乃屬高溫且活耀,但形成塵埃的條件為溫度需小於2000K,因此,一般而言,在類型體環境下,極難形成塵埃。在過去的推論中,便認為類星體周遭的灰塵乃自老舊恆星或是AGB stars 所噴發出來的。

    然而,在2002年,Elvis et al.提出一套模型解釋,其解釋在類星體風中,仍有些環境條件和AGB stars是很接近的,那這樣的環境下,便可利於灰塵形成。2007年,Markwick-Kemper et al. 用了Spitzer-IRS 所得到的PG2112+059 data做分析,得到了其中可能組成的成分。

    本研究便由此處再做延伸,分別找了五個radio-quiet 類星體(PG 2112+059, PG 0043+039, PG 1211+143, PG 1351+640 and PG 0050+124.)作為目標,再用常見的六種宇宙中的成分做比對,發展出新的方式去分析這些數值,嘗試著在結果中觀察類星體成分比例是否受到類星體風大小的影響,以期望證實2002年Elvis et al.所提出之模型是否正確。

    Forming dust is difficult, it needs a high density and low temperature (<2000K) environment. Therefore, where the dust in the torus around Active Galactic Nuclei (AGN) comes from is an interesting question. It could be processed interstellar dust, or, as Elvis et al (2002) proposed, it could be formed in the wind lifting off the accretion disk. Assuming this is the case, we can analyze the composition of this dust using mid-IR spectroscopy (Markwick-Kemper
    et al., 2007).
    Silicate features have been detected in emission at 9.7 and 18 µm and have been seen in the spectrum of several quasars and AGN (Siebenmorgen et al., 2005; Sturm et al., 2005; Hao et al., 2005; Shi et al., 2006; Markwick-Kemper et al., 2007).
    In this study, we fit the Spitzer Space Telescope InfraRed Spectrograph (IRS) data of AGN with a power-law continuum model, and an optically thin dust component. We use the opacities for six different species (Alumina(Al2O3),
    Periclase(MgO), PAHs, Fe-rich Amorphous Olivine, Fe-poor Amorphous Olivine, and Forsterite(Mg2SiO4)) calculated from laboratory data using a Continuous Distribution of Ellipsoids (CDE) or Mie Theory (Mie). Fitting the spectra with this model, we can identify the dust features in the spectrum to determine the composition of the dust around AGN. We have successfully applied the model to PG 2112+059, then we use the same model to analyze other radio-quiet quasars: two BAL quasars with strong winds, PG 2112+059 and PG 0043+039; three non-BAL or mini-BAL, PG 1211+143,
    PG 1351+640 and PG 0050+124.

    1 Introduction 3 1.1 Physical processes in AGN . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Supermassive Black holes . . . . . . . . . . . . . . . . 3 1.1.2 Accretion disks . . . . . . . . . . . . . . . . . . . . . . 5 1.1.3 Radio Jets . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.4 Dust Torus . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Active Galactic nuclei (AGN) . . . . . . . . . . . . . . . . . . 11 1.2.1 Seyfert galaxies . . . . . . . . . . . . . . . . . . . . . . 11 1.2.2 Quasars . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3 What is in the torus? . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.1 Dust around the AGN . . . . . . . . . . . . . . . . . . 14 1.3.2 Basic properties of Interstellar Dust Grain . . . . . . . 16 2 Target and Sample 22 2.1 Target selection . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 Spitzer IRS data . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Methods 29 3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Q-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.1 What is Q-value . . . . . . . . . . . . . . . . . . . . . . 33 3.2.2 Relationship with opacity . . . . . . . . . . . . . . . . 34 3.2.3 Two models to compute Q-values . . . . . . . . . . . . 35 3.3 Selected Species . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4 Fitting method . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4 Results and Discussion 44 4.1 PG 2112+059 with 2 di erent methods . . . . . . . . . . . . . 44 4.2 Common dust features of AGNs . . . . . . . . . . . . . . . . . 46 4.3 Comparison between sources . . . . . . . . . . . . . . . . . . . 49 4.3.1 Board Absorption Line (BALs) . . . . . . . . . . . . . 49 4.3.2 non-BAL and mini-BAL . . . . . . . . . . . . . . . . . 50 5 Conclusion 61 A Eddington limit 63 Bibliography 68

    Antonucci, R. (1993). Uni ed models for active galactic nuclei and quasars.
    ARA&A, 31:473{521.
    Barvainis, R., Lonsdale, C., and Antonucci, R. (1996). Radio Spectra of
    Radio Quiet Quasars. Astron. J., 111:1431.
    Beckmann, V. and Shrader, C. R. (2013). The AGN phenomenon: open
    issues. ArXiv e-prints.
    Blommaert, J. A. D. L., Groenewegen, M. A. T., Okumura, K., Ganesh, S.,
    Omont, A., Cami, J., Glass, I. S., Habing, H. J., Schultheis, M., Simon,
    G., and van Loon, J. T. (2006). ISO mid-infrared spectroscopy of Galactic
    Bulge AGB stars. Astron. Astrophys., 460:555{563.
    Bonning, E. W., Cheng, L., Shields, G. A., Salviander, S., and Gebhardt,
    K. (2007). Accretion Disk Temperatures and Continuum Colors in QSOs.
    Astrophys. J., 659:211{217.
    Bouwman, J., Lawson, W. A., Dominik, C., Feigelson, E. D., Henning, T.,
    Tielens, A. G. G. M., and Waters, L. B. F. M. (2006). Binarity as a Key
    Factor in Protoplanetary Disk Evolution: Spitzer Disk Census of the 
    Chamaeleontis Cluster. Astrophys. J., 653:L57{L60.
    Bradley W. Carroll, D. A. O. (2006). An Introduction to Modern Astrophysics
    (2nd Edition). Addison-Wesley.
    Clavel, J., Wamsteker, W., and Glass, I. S. (1989). Hot dust on the outskirts
    of the broad-line region in Fairall 9. Astrophys. J., 337:236{250.
    Demyk, K., Jones, A. P., Dartois, E., Cox, P., and D'Hendecourt, L. (1999).
    The chemical composition of the silicate dust around RAFGL7009S and
    IRAS 19110+1045. Astron. Astrophys., 349:267{275.
    Dhanda, N., Baldwin, J. A., Bentz, M. C., and Osmer, P. S. (2007). Quasars
    with Super-Metal-rich Emission-Line Regions. Astrophys. J., 658:804{814.
    Elitzur, M. (2005). IR Emission from AGNs. ArXiv Astrophysics e-prints.
    Elitzur, M. (2007). Uni cation Issues and the AGN Torus. In Ho, L. C.
    and Wang, J.-W., editors, The Central Engine of Active Galactic Nuclei,
    volume 373 of Astronomical Society of the Paci c Conference Series, page
    415.
    Elitzur, M. and Shlosman, I. (2006). The AGN-obscuring Torus: The End
    of the \Doughnut" Paradigm? Astrophys. J., 648:L101{L104.
    Elvis, M., Marengo, M., and Karovska, M. (2002). Smoking Quasars: A New
    Source for Cosmic Dust. Astrophys. J., 567:L107{L110.
    Evans, A. (1993). The Dusty Universe. Ellis Horwood.
    Fan, X., Narayanan, V. K., Lupton, R. H., Strauss, M. A., Knapp, G. R.,
    Becker, R. H., White, R. L., Pentericci, L., Leggett, S. K., Haiman, Z.,
    Gunn, J. E., Ivezic, Z., Schneider, D. P., Anderson, S. F., Brinkmann, J.,
    Bahcall, N. A., Connolly, A. J., Csabai, I., Doi, M., Fukugita, M., Geballe,
    T., Grebel, E. K., Harbeck, D., Hennessy, G., Lamb, D. Q., Miknaitis, G.,
    Munn, J. A., Nichol, R., Okamura, S., Pier, J. R., Prada, F., Richards,
    G. T., Szalay, A., and York, D. G. (2001). A Survey of z > 5.8 Quasars in
    the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the
    Spatial Density of Luminous Quasars at z~6. Astron. J., 122:2833{2849.
    Fanidakis, N., Baugh, C. M., Benson, A. J., Bower, R. G., Cole, S., Done, C.,
    and Frenk, C. S. (2011). Grand uni cation of AGN activity in the CDM
    cosmology. MNRAS, 410:53{74.
    Ferrarese, L. and Ford, H. (2005). Supermassive Black Holes in Galactic
    Nuclei: Past, Present and Future Research. Space Sci. Rev., 116:523{624.
    Ferrarotti, A. S. and Gail, H.-P. (2003). Mineral formation in stellar winds.
    IV. Formation of magnesiowustite. Astron. Astrophys., 398:1029{1039.
    Frenklach, M., Carmer, C. S., and Feigelson, E. D. (1989). Silicon carbide
    and the origin of interstellar carbon grains. Nature, 339:196{198.
    Frenklach, M. and Feigelson, E. D. (1989). Formation of polycyclic aromatic
    hydrocarbons in circumstellar envelopes. Astrophys. J., 341:372{384.
    Gail, H.-P. and Sedlmayr, E. (1998). Dust Formation in M Stars. The Molec-
    ular Astrophysics of Stars and Galaxies, edited by Thomas W. Hartquist
    and David A. Williams. Clarendon Press, Oxford, 1998., p.285, 4:285.
    Gallagher, S. C., Abado, M. M., Everett, J. E., Keating, S., and Deo, R. P.
    (2013). Why a Windy Torus? ArXiv e-prints.
    Gallagher, S. C., Brandt, W. N., Wills, B. J., Charlton, J. C., Chartas, G.,
    and Laor, A. (2004). Dramatic X-Ray Spectral Variability of the Broad
    Absorption Line Quasar PG 2112+059. Astrophys. J., 603:425{435.
    Gaskell, C. M. (2009). What broad emission lines tell us about how active
    galactic nuclei work. New Astron.Rev., 53:140{148.
    Ghez, A. M., Salim, S., Hornstein, S. D., Tanner, A., Lu, J. R., Morris, M.,
    Becklin, E. E., and Duch^ene, G. (2005). Stellar Orbits around the Galactic
    Center Black Hole. Astrophys. J., 620:744{757.
    Granato, G. L., Danese, L., and Franceschini, A. (1997). Thick Tori around
    Active Galactic Nuclei: The Case for Extended Tori and Consequences for
    Their X-Ray and Infrared Emission. Astrophys. J., 486:147.
    Hao, L., Spoon, H. W. W., Sloan, G. C., Marshall, J. A., Armus, L., Tielens,
    A. G. G. M., Sargent, B., van Bemmel, I. M., Charmandaris, V.,Weedman,
    D. W., and Houck, J. R. (2005). The Detection of Silicate Emission from
    Quasars at 10 and 18 Microns. Astrophys. J., 625:L75{L78.
    Hewett, P. C. and Foltz, C. B. (2003). The Frequency and Radio Properties
    of Broad Absorption Line Quasars. Astron. J., 125:1784{1794.
    Houck, J. R., Roellig, T. L., van Cleve, J., Forrest, W. J., Herter, T.,
    Lawrence, C. R., Matthews, K., Reitsema, H. J., Soifer, B. T., Watson,
    D. M., Weedman, D., Huisjen, M., Troeltzsch, J., Barry, D. J., Bernard-
    Salas, J., Blacken, C. E., Brandl, B. R., Charmandaris, V., Devost, D.,
    Gull, G. E., Hall, P., Henderson, C. P., Higdon, S. J. U., Pirger, B. E.,
    Schoenwald, J., Sloan, G. C., Uchida, K. I., Appleton, P. N., Armus, L.,
    Burgdorf, M. J., Fajardo-Acosta, S. B., Grillmair, C. J., Ingalls, J. G.,
    Morris, P. W., and Teplitz, H. I. (2004). The Infrared Spectrograph (IRS)
    on the Spitzer Space Telescope. Astrophys. J. Suppl., 154:18{24.
    Imanishi, M. and Ueno, S. (2000). The 9.7 Micron Silicate Dust Absorption
    toward the Cygnus A Nucleus and the Inferred Location of the Obscuring
    Dust. Astrophys. J., 535:626{631.
    Ivezic, Z. and Elitzur, M. (1997). Self-similarity and scaling behaviour of infrared
    emission from radiatively heated dust - I. Theory. MNRAS, 287:799{
    811.
    Ja e, W., Meisenheimer, K., Rottgering, H. J. A., Leinert, C., Richichi, A.,
    Chesneau, O., Fraix-Burnet, D., Glazenborg-Kluttig, A., Granato, G.-L.,
    Graser, U., Heijligers, B., Kohler, R., Malbet, F., Miley, G. K., Paresce,
    F., Pel, J.-W., Perrin, G., Przygodda, F., Schoeller, M., Sol, H., Waters,
    L. B. F. M., Weigelt, G., Woillez, J., and de Zeeuw, P. T. (2004). The
    central dusty torus in the active nucleus of NGC 1068. Nature, 429:47{49.
    Jager, C., Dorschner, J., Mutschke, H., Posch, T., and Henning, T. (2003).
    Steps toward interstellar silicate mineralogy. VII. Spectral properties and
    crystallization behaviour of magnesium silicates produced by the sol-gel
    method. Astron. Astrophys., 408:193{204.
    Kemper, F., Vriend, W. J., and Tielens, A. G. G. M. (2004). The Absence
    of Crystalline Silicates in the Di use Interstellar Medium. Astrophys. J.,
    609:826{837.
    Kemper, F., Vriend, W. J., and Tielens, A. G. G. M. (2005). Erratum:
    \The Absence of Crystalline Silicates in the Di use Interstellar Medium"
    (<A href="/abs/2004ApJ...609..826K">ApJ, 609, 826 [2004]</A>). Astro-
    phys. J., 633:534{534.
    Knacke, R. F. and Thomson, R. K. (1973). Infrared Extinction Cross Sections
    of Silicate Grains. Publ. Astron. Soc. Paci c, 85:341.
    Krawczynski, H. and Treister, E. (2013). Active Galactic Nuclei - the Physics
    of Individual Sources and the Cosmic History of Formation and Evolution.
    ArXiv e-prints.
    Krolik, J. H. and Begelman, M. C. (1988). Molecular tori in Seyfert galaxies
    - Feeding the monster and hiding it. Astrophys. J., 329:702{711.
    Laor, A. and Draine, B. T. (1993). Spectroscopic constraints on the properties
    of dust in active galactic nuclei. Astrophys. J., 402:441{468.
    Lebouteiller, V., Barry, D. J., Spoon, H. W. W., Bernard-Salas, J., Sloan,
    G. C., Houck, J. R., and Weedman, D. W. (2011). CASSIS: The Cornell
    Atlas of Spitzer/Infrared Spectrograph Sources. Astrophys. J. Suppl.,
    196:8.
    Lodders, K. and Fegley, Jr., B. (1999). Condensation Chemistry of Circum-
    stellar Grains. In Le Bertre, T., Lebre, A., and Waelkens, C., editors,
    Asymptotic Giant Branch Stars, volume 191 of IAU Symposium, page 279.
    Madejski, G. (2003). Black holes in active galactic nuclei. pages 36{45.
    Markwardt, C. B. (2009). Non-linear Least-squares Fitting in IDL with
    MPFIT. In Bohlender, D. A., Durand, D., and Dowler, P., editors, Astro-
    nomical Data Analysis Software and Systems XVIII, volume 411 of Astro-
    nomical Society of the Paci c Conference Series, page 251.
    Markwick-Kemper, F., Gallagher, S. C., Hines, D. C., and Bouwman, J.
    (2007). Dust in the Wind: Crystalline Silicates, Corundum, and Periclase
    in PG 2112+059. Astrophys. J., 668:L107{L110.
    Molster, F. J., Waters, L. B. F. M., and Kemper, F. (2010). The Mineralogy
    of Interstellar and Circumstellar Dust in Galaxies. In Henning, T., editor,
    Lecture Notes in Physics, Berlin Springer Verlag, volume 815 of Lecture
    Notes in Physics, Berlin Springer Verlag, pages 143{201.
    Molster, F. J., Waters, L. B. F. M., Tielens, A. G. G. M., Koike, C., and
    Chihara, H. (2002). Crystalline silicate dust around evolved stars. III.
    A correlations study of crystalline silicate features. Astron. Astrophys.,
    382:241{255.
    Nenkova, M., Sirocky, M. M., Nikutta, R., Ivezic, Z., and Elitzur, M. (2008).
    AGN Dusty Tori. II. Observational Implications of Clumpiness. Astro-
    phys. J., 685:160{180.
    Novak, G. S., Ostriker, J. P., and Ciotti, L. (2012). Radiative transfer and
    radiative driving of out
    ows in active galactic nuclei and starbursts. MN-
    RAS, 427:2734{2756.
    Peterson, B. M. (1997). An Introduction to Active Galactic Nuclei. CAMBRIDGE
    UNIVERSITY PRESS.
    Pier, E. A. and Krolik, J. H. (1992). Infrared spectra of obscuring dust tori
    around active galactic nuclei. I - Calculational method and basic trends.
    Astrophys. J., 401:99{109.
    Pounds, K. A., Reeves, J. N., King, A. R., Page, K. L., O'Brien, P. T.,
    and Turner, M. J. L. (2003). A high-velocity ionized out
    ow and XUV
    photosphere in the narrow emission line quasar PG1211+143. MNRAS,
    345:705{713.
    Robson, I. E. I. (1995). Active galactic nuclei. Wiley.
    Schilling, G. (2001). Quasars or Blazars? It's All in the Angle. Science,
    292:1985.
    Schmidt, M. (1963). 3C 273 : A Star-Like Object with Large Red-Shift.
    Nature, 197:1040.
    Schmidt, M. (1969a). Models of Quasi-stellar Sources. In Douglas, K. N.,
    Robinson, I., Schild, A., Schucking, E. L., Wheeler, J. A., andWoolf, N. J.,
    editors, Quasars and high-energy astronomy, page 55.
    Schmidt, M. (1969b). Observed properties of quasi-stellar objects. In Con-
    temporary Physics, Volume 1, page 467.
    Schmidt, M. and Matthews, T. A. (1964). Redshift of the Quasi-Stellar Radio
    Sources 3c 47 and 3c 147. Astrophys. J., 139:781.
    Schmitt, H. R., Antonucci, R. R. J., Ulvestad, J. S., Kinney, A. L., Clarke,
    C. J., and Pringle, J. E. (2001). Testing the Uni ed Model with an Infraredselected
    Sample of Seyfert Galaxies. Astrophys. J., 555:663{672.
    Schodel, R., Ott, T., Genzel, R., Eckart, A., Mouawad, N., and Alexander,
    T. (2003). Stellar Dynamics in the Central Arcsecond of Our Galaxy.
    Astrophys. J., 596:1015{1034.
    Sedlmayr, E. (1994). From Molecules to Grains. In Jorgensen, U. G., editor,
    IAU Colloq. 146: Molecules in the Stellar Environment, volume 428 of
    Lecture Notes in Physics, Berlin Springer Verlag, page 163.
    Seyfert, C. K. (1943). Nuclear Emission in Spiral Nebulae. Astrophys. J.,
    97:28.
    Shi, Y., Rieke, G. H., Hines, D. C., Gorjian, V., Werner, M. W., Cleary,
    K., Low, F. J., Smith, P. S., and Bouwman, J. (2006). 9.7 m Silicate
    Features in Active Galactic Nuclei: New Insights into Uni cation Models.
    Astrophys. J., 653:127{136.
    Siebenmorgen, R., Haas, M., Kruegel, E., and Schulz, B. (2005). Exploring
    the nature of the 9-13 micron silicate emission discovered in quasars.
    Spitzer Proposal, page 20231.
    Sturm, E., Schweitzer, M., Lutz, D., Contursi, A., Genzel, R., Lehnert, M. D.,
    Tacconi, L. J., Veilleux, S., Rupke, D. S., Kim, D.-C., Sternberg, A., Maoz,
    D., Lord, S., Mazzarella, J., and Sanders, D. B. (2005). Silicate Emissions
    in Active Galaxies: From LINERs to QSOs. Astrophys. J., 629:L21{L23.
    Volonteri, M. (2010). Formation of supermassive black holes. A&A Rev.,
    18:279{315.
    Werner, M. W., Roellig, T. L., Low, F. J., Rieke, G. H., Rieke, M., Ho mann,
    W. F., Young, E., Houck, J. R., Brandl, B., Fazio, G. G., Hora, J. L.,
    Gehrz, R. D., Helou, G., Soifer, B. T., Stau er, J., Keene, J., Eisenhardt,
    P., Gallagher, D., Gautier, T. N., Irace, W., Lawrence, C. R., Simmons, L.,
    Van Cleve, J. E., Jura, M., Wright, E. L., and Cruikshank, D. P. (2004).
    The Spitzer Space Telescope Mission. Astrophys. J. Suppl., 154:1{9.
    Woltjer, L. (1959). Emission Nuclei in Galaxies. Astrophys. J., 130:38.
    Woo, J.-H. and Urry, C. M. (2002). The Independence of Active Galactic
    Nucleus Black Hole Mass and Radio Loudness. Astrophys. J., 581:L5{L7.
    Zeilik, M. (2002). Astronomy: The Evolving Universe. Cambridge University
    Press.
    Zheng, W., Kriss, G. A., Wang, J. X., Brotherton, M., Oegerle, W. R., Blair,
    W. P., Davidsen, A. F., Green, R. F., Hutchings, J. B., and Kaiser, M. E.
    (2001). Ultraviolet Broad Absorption Features and the Spectral Energy
    Distribution of the Quasar PG 1351+64. Astrophys. J., 562:152{159.

    下載圖示
    QR CODE