研究生: |
黃順志 Huang, Shun-Chih |
---|---|
論文名稱: |
氨對斑馬魚仔魚側線功能及逆流行為的影響 Effects of Ammonia on Lateral Line Hair Cells and Rheotaxis in Zebrafish Larvae |
指導教授: |
林豊益
Lin, Li-Yih |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 50 |
中文關鍵詞: | 氨 、側線 、逆流行為 、神經丘 、毛細胞 、MET通道 |
英文關鍵詞: | ammonia, lateral line, rheotaxis, neuromast, hair cell, MET channel |
DOI URL: | http://doi.org/10.6345/THE.NTNU.SLS.002.2018.D01 |
論文種類: | 學術論文 |
相關次數: | 點閱:137 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氨(包含氣態的NH3以及離子態的NH4+)是魚類代謝的主要廢物。魚體內氨濃度提高會造成魚隻游泳不平衡、內分泌失調、離子調節功能失常甚至死亡。魚類的側線系統對於感測水流的方向非常重要,影響著魚的其他行為,如:游泳的平衡、逆流行為(rheotaxis)、逃跑以及捕食獵物。側線神經丘(neuromast)是由許多毛細胞(hair cell)所組成,可感測機械性的水流刺激。當水流撥打毛細胞上的纖毛束,刺激纖毛束頂端的機械性通道mechanotransducer (MET) channel開啟,使鈣離子流入毛細胞而產生水流方向的訊息。本研究利用斑馬魚仔魚作為實驗物種,研究離子態的氨是否會影響到斑馬魚側線毛細胞的功能,進而使其逆流行為表現不正常。在本研究中,將斑馬魚仔魚浸泡於氯化銨的水溶液30分鐘後,分析其逆流行為、游泳速度、毛細胞數目(免疫染色及FM1-43染色)以及毛細胞的鈣離子流量。實驗結果發現,在斑馬魚仔魚的逆流行為以及游泳速率,皆會顯著下降。然而免疫染色及FM1-43染色結果卻顯示毛細胞數目並不會減少。離子流量部分,毛細胞的鈣離子流量受到抑制,同時也在測量到銨離子流入毛細胞,但是使用MET通道的抑制劑新黴素及鑭離子,可以降低銨離子的流入。綜合以上實驗結果,我們的研究第一次發現:氨由MET通道進入毛細胞,影響側線毛細胞的功能,進而可能對斑馬魚仔魚的逆流與游泳行為造成影響。
關鍵字:氨、側線、逆流行為(rheotaxis)、神經丘(neuromast)、毛細胞、MET通道
Ammonia (including NH3 and NH4+) is the major nitrogenous waste of fish. Accumulation of ammonia in fish can lead to swimming imbalance, disorder of endocrine, disruption of ionic balance and even death. The lateral line system of fish plays a critical role in sensing the direction of water flow, which is required for several behaviors including swimming balance, rheotaxis, escape and predation. The lateral line neuromast is composed of several mechanosensory hair cells which can sense water flow through the deflection of cilia on the top of hair cells. As water deflects the cilia, a mechanotransducer channel (MET channel) on cilia opens and allows Ca2+ to flow into the hair cells and finally generates a sensory signal. By using zebrafish larvae as a model, this study attempted to investigate whether ionic NH4+ can impair the function of lateral line hair cells and cause abnormal rheotaxis behavior. After exposing to NH4Cl for 30 min, the rheotaxis behavior, swimming velocity, number of hair cell (labeled by FM1-43 and immunostaining), and MET channel-mediated Ca2+ influx was analyzed. The NH4+ treatment significantly suppressed the rheotaxis behavior and swimming velocity. Although the number of hair cells did not change, the Ca2+ influx was significantly suppressed after NH4+ treatment. In addition, the NH4+ influx at hair cells was also found in fish exposed to NH4+ and the influx was blocked by the MET channel blockers, suggesting that NH4+ could be absorbed by hair cells through the MET channel. Taken together, this study shows for the first time that NH4+ exposure can impair the function of the lateral line hair cells in zebrafish larvae and the MET channel in hair cells is the site for the NH4+ entrance.
Keywords:ammonia, lateral line, rheotaxis, neuromast, hair cell, MET channel
Allert, N., H. Koller, and M. Siebler. 1998. Ammonia-induced depolarization of cultured rat cortical astrocytes. Brain Res. 782:261-270.
Baldisserotto, B., J.A. Martos-Sitcha, C.C. Menezes, C. Toni, R.L. Prati, O. Garcia Lde, J. Salbego, J.M. Mancera, and G. Martinez-Rodriguez. 2014. The effects of ammonia and water hardness on the hormonal, osmoregulatory and metabolic responses of the freshwater silver catfish Rhamdia quelen. Aquat Toxicol. 152:341-352.
Becker, T., M.F. Wullimann, C.G. Becker, R.R. Bernhardt, and M. Schachner. 1997. Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol. 377:577-595.
Binstock, L., and H. Lecar. 1969. Ammonium ion currents in the squid giant axon. J Gen Physiol. 53:342-361.
Brignull, H.R., D.W. Raible, and J.S. Stone. 2009. Feathers and fins: non-mammalian models for hair cell regeneration. Brain Res. 1277:12-23.
Chablais, F., and A. Jazwinska. 2010. IGF signaling between blastema and wound epidermis is required for fin regeneration. Development. 137:871-879.
Ching, B., S.F. Chew, W.P. Wong, and Y.K. Ip. 2009. Environmental ammonia exposure induces oxidative stress in gills and brain of Boleophthalmus boddarti (mudskipper). Aquat Toxicol. 95:203-212.
Chitnis, A.B., D.D. Nogare, and M. Matsuda. 2012. Building the posterior lateral line system in zebrafish. Dev Neurobiol. 72:234-255.
Dambly-Chaudiere, C., D. Sapede, F. Soubiran, K. Decorde, N. Gompel, and A. Ghysen. 2003. The lateral line of zebrafish: a model system for the analysis of morphogenesis and neural development in vertebrates. Biol Cell. 95:579-587.
Engeszer, R.E., L.B. Patterson, A.A. Rao, and D.M. Parichy. 2007. Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish. 4:21-40.
Esterberg, R., D.W. Hailey, A.B. Coffin, D.W. Raible, and E.W. Rubel. 2013. Disruption of intracellular calcium regulation is integral to aminoglycoside-induced hair cell death. J Neurosci. 33:7513-7525.
Evans, D.H., P.M. Piermarini, and K.P. Choe. 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev. 85:97-177.
Fettiplace, R. 2009. Defining features of the hair cell mechanoelectrical transducer channel. Pflugers Arch. 458:1115-1123.
Gale, J.E., W. Marcotti, H.J. Kennedy, C.J. Kros, and G.P. Richardson. 2001. FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel. J Neurosci. 21:7013-7025.
Gemberling, M., T.J. Bailey, D.R. Hyde, and K.D. Poss. 2013. The zebrafish as a model for complex tissue regeneration. Trends Genet. 29:611-620.
Gillespie, P.G., and U. Muller. 2009. Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell. 139:33-44.
Goldshmit, Y., T.E. Sztal, P.R. Jusuf, T.E. Hall, M. Nguyen-Chi, and P.D. Currie. 2012. Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish. J Neurosci. 32:7477-7492.
Goodrich, L.V. 2005. Hear, hear for the zebrafish. Neuron. 45:3-5.
Harris, J.A., A.G. Cheng, L.L. Cunningham, G. MacDonald, D.W. Raible, and E.W. Rubel. 2003. Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio). J Assoc Res Otolaryngol. 4:219-234.
Hernandez, P.P., V. Moreno, F.A. Olivari, and M.L. Allende. 2006. Sub-lethal concentrations of waterborne copper are toxic to lateral line neuromasts in zebrafish (Danio rerio). Hear Res. 213:1-10.
Howe, D.G., Y.M. Bradford, T. Conlin, A.E. Eagle, D. Fashena, K. Frazer, J. Knight, P. Mani, R. Martin, S.A. Moxon, H. Paddock, C. Pich, S. Ramachandran, B.J. Ruef, L. Ruzicka, K. Schaper, X. Shao, A. Singer, B. Sprunger, C.E. Van Slyke, and M. Westerfield. 2013a. ZFIN, the Zebrafish Model Organism Database: increased support for mutants and transgenics. Nucleic Acids Res. 41:D854-860.
Howe, K., M.D. Clark, C.F. Torroja, J. Torrance, C. Berthelot, M. Muffato, J.E. Collins, S. Humphray, K. McLaren, L. Matthews, S. McLaren, I. Sealy, M. Caccamo, C. Churcher, C. Scott, J.C. Barrett, R. Koch, G.J. Rauch, S. White, W. Chow, B. Kilian, L.T. Quintais, J.A. Guerra-Assuncao, Y. Zhou, Y. Gu, J. Yen, J.H. Vogel, T. Eyre, S. Redmond, R. Banerjee, J. Chi, B. Fu, E. Langley, S.F. Maguire, G.K. Laird, D. Lloyd, E. Kenyon, S. Donaldson, H. Sehra, J. Almeida-King, J. Loveland, S. Trevanion, M. Jones, M. Quail, D. Willey, A. Hunt, J. Burton, S. Sims, K. McLay, B. Plumb, J. Davis, C. Clee, K. Oliver, R. Clark, C. Riddle, D. Elliot, G. Threadgold, G. Harden, D. Ware, S. Begum, B. Mortimore, G. Kerry, P. Heath, B. Phillimore, A. Tracey, N. Corby, M. Dunn, C. Johnson, J. Wood, S. Clark, S. Pelan, G. Griffiths, M. Smith, R. Glithero, P. Howden, N. Barker, C. Lloyd, C. Stevens, J. Harley, K. Holt, G. Panagiotidis, J. Lovell, H. Beasley, C. Henderson, D. Gordon, K. Auger, D. Wright, J. Collins, C. Raisen, L. Dyer, K. Leung, L. Robertson, K. Ambridge, D. Leongamornlert, S. McGuire, R. Gilderthorp, C. Griffiths, D. Manthravadi, S. Nichol, G. Barker, et al. 2013b. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 496:498-503.
Ip, Y.K., and S.F. Chew. 2010. Ammonia production, excretion, toxicity, and defense in fish: a review. Front Physiol. 1:134.
Kishimoto, N., K. Shimizu, and K. Sawamoto. 2012. Neuronal regeneration in a zebrafish model of adult brain injury. Dis Model Mech. 5:200-209.
Kizil, C., N. Kyritsis, S. Dudczig, V. Kroehne, D. Freudenreich, J. Kaslin, and M. Brand. 2012. Regenerative neurogenesis from neural progenitor cells requires injury-induced expression of Gata3. Dev Cell. 23:1230-1237.
Kroehne, V., D. Freudenreich, S. Hans, J. Kaslin, and M. Brand. 2011. Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development. 138:4831-4841.
Langheinrich, U. 2003. Zebrafish: a new model on the pharmaceutical catwalk. Bioessays. 25:904-912.
Ledent, V. 2002. Postembryonic development of the posterior lateral line in zebrafish. Development. 129:597-604.
Lin, L.Y., W. Pang, W.M. Chuang, G.Y. Hung, Y.H. Lin, and J.L. Horng. 2013. Extracellular Ca2+ and Mg2+ modulate aminoglycoside blockade of mechanotransducer channel-mediated Ca2+ entry in zebrafish hair cells: an in vivo study with the SIET. Am J Physiol Cell Physiol. 305:C1060-1068.
Ma, E.Y., and D.W. Raible. 2009. Signaling pathways regulating zebrafish lateral line development. Curr Biol. 19:R381-386.
Marcaida, G., V. Felipo, C. Hermenegildo, M.D. Minana, and S. Grisolia. 1992. Acute ammonia toxicity is mediated by the NMDA type of glutamate receptors. FEBS Lett. 296:67-68.
Marz, M., R. Schmidt, S. Rastegar, and U. Strahle. 2011. Regenerative response following stab injury in the adult zebrafish telencephalon. Dev Dyn. 240:2221-2231.
McNeil, P.L., D. Boyle, T.B. Henry, R.D. Handy, and K.A. Sloman. 2014. Effects of metal nanoparticles on the lateral line system and behaviour in early life stages of zebrafish (Danio rerio). Aquat Toxicol. 152:318-323.
Meyers, J.R., R.B. MacDonald, A. Duggan, D. Lenzi, D.G. Standaert, J.T. Corwin, and D.P. Corey. 2003. Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. J Neurosci. 23:4054-4065.
Minana, M.D., C. Hermenegildo, M. Llsansola, C. Montoliu, S. Grisolia, and V. Felipo. 1996. Carnitine and choline derivatives containing a trimethylamine group prevent ammonia toxicity in mice and glutamate toxicity in primary cultures of neurons. J Pharmacol Exp Ther. 279:194-199.
Nakada, T., K. Hoshijima, M. Esaki, S. Nagayoshi, K. Kawakami, and S. Hirose. 2007. Localization of ammonia transporter Rhcg1 in mitochondrion-rich cells of yolk sac, gill, and kidney of zebrafish and its ionic strength-dependent expression. Am J Physiol Regul Integr Comp Physiol. 293:R1743-1753.
Namdaran, P., K.E. Reinhart, K.N. Owens, D.W. Raible, and E.W. Rubel. 2012. Identification of modulators of hair cell regeneration in the zebrafish lateral line. J Neurosci. 32:3516-3528.
Niihori, M., T. Platto, S. Igarashi, A. Hurbon, A.M. Dunn, P. Tran, H. Tran, J.A. Mudery, M.J. Slepian, and A. Jacob. 2015. Zebrafish swimming behavior as a biomarker for ototoxicity-induced hair cell damage: a high-throughput drug development platform targeting hearing loss. Transl Res. 166:440-450.
Nogare, D.D., M. Nikaido, K. Somers, J. Head, T. Piotrowski, and A.B. Chitnis. 2017. In toto imaging of the migrating Zebrafish lateral line primordium at single cell resolution. Dev Biol. 422:14-23.
Nunez, V.A., A.F. Sarrazin, N. Cubedo, M.L. Allende, C. Dambly-Chaudiere, and A. Ghysen. 2009. Postembryonic development of the posterior lateral line in the zebrafish. Evol Dev. 11:391-404.
Ohmori, H. 1985. Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J Physiol. 359:189-217.
Olive, R., S. Wolf, A. Dubreuil, V. Bormuth, G. Debregeas, and R. Candelier. 2016. Rheotaxis of Larval Zebrafish: Behavioral Study of a Multi-Sensory Process. Front Syst Neurosci. 10:14.
Olszewski, J., M. Haehnel, M. Taguchi, and J.C. Liao. 2012. Zebrafish larvae exhibit rheotaxis and can escape a continuous suction source using their lateral line. PLoS One. 7:e36661.
Oteiza, P., I. Odstrcil, G. Lauder, R. Portugues, and F. Engert. 2017. A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish. Nature. 547:445-448.
Poss, K.D., L.G. Wilson, and M.T. Keating. 2002. Heart regeneration in zebrafish. Science. 298:2188-2190.
Raible, D.W., and G.J. Kruse. 2000. Organization of the lateral line system in embryonic zebrafish. J Comp Neurol. 421:189-198.
Randall, D.J., and T.K. Tsui. 2002. Ammonia toxicity in fish. Mar Pollut Bull. 45:17-23.
Raymond, P.A., L.K. Barthel, R.L. Bernardos, and J.J. Perkowski. 2006. Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev Biol. 6:36.
Sanchez, M., M.L. Ceci, D. Gutierrez, C. Anguita-Salinas, and M.L. Allende. 2016. Mechanosensory organ regeneration in zebrafish depends on a population of multipotent progenitor cells kept latent by Schwann cells. BMC Biol. 14:27.
Santoriello, C., and L.I. Zon. 2012. Hooked! Modeling human disease in zebrafish. J Clin Invest. 122:2337-2343.
Shih, T.H., J.L. Horng, P.P. Hwang, and L.Y. Lin. 2008. Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. Am J Physiol Cell Physiol. 295:C1625-1632.
Shih, T.H., J.L. Horng, Y.T. Lai, and L.Y. Lin. 2013. Rhcg1 and Rhbg mediate ammonia excretion by ionocytes and keratinocytes in the skin of zebrafish larvae: H+-ATPase-linked active ammonia excretion by ionocytes. Am J Physiol Regul Integr Comp Physiol. 304:R1130-1138.
Shingles, A., D.J. McKenzie, E.W. Taylor, A. Moretti, P.J. Butler, and S. Ceradini. 2001. Effects of sublethal ammonia exposure on swimming performance in rainbow trout (Oncorhynchus mykiss). J Exp Biol. 204:2691-2698.
Singh, S.P., J.E. Holdway, and K.D. Poss. 2012. Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev Cell. 22:879-886.
Stoick-Cooper, C.L., G. Weidinger, K.J. Riehle, C. Hubbert, M.B. Major, N. Fausto, and R.T. Moon. 2007. Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development. 134:479-489.
Suli, A., G.M. Watson, E.W. Rubel, and D.W. Raible. 2012. Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells. PLoS One. 7:e29727.
Thomas, A.J., D.W. Hailey, T.M. Stawicki, P. Wu, A.B. Coffin, E.W. Rubel, D.W. Raible, J.A. Simon, and H.C. Ou. 2013. Functional mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line. J Neurosci. 33:4405-4414.
Uribe, P.M., L.H. Kawas, J.W. Harding, and A.B. Coffin. 2015. Hepatocyte growth factor mimetic protects lateral line hair cells from aminoglycoside exposure. Front Cell Neurosci. 9:3.
Vihtelic, T.S., J.E. Soverly, S.C. Kassen, and D.R. Hyde. 2006. Retinal regional differences in photoreceptor cell death and regeneration in light-lesioned albino zebrafish. Exp Eye Res. 82:558-575.
Visek, W.J. 1984. Ammonia: its effects on biological systems, metabolic hormones, and reproduction. J Dairy Sci. 67:481-498.
Wicks, B.J., R. Joensen, Q. Tang, and D.J. Randall. 2002. Swimming and ammonia toxicity in salmonids: the effect of sub lethal ammonia exposure on the swimming performance of coho salmon and the acute toxicity of ammonia in swimming and resting rainbow trout. Aquat Toxicol. 59:55-69.