研究生: |
王思涵 Wang, Sih-Han |
---|---|
論文名稱: |
可適應無人搬運車彈性化設計之學習式導航策略及強健式路徑跟隨控制 Adaptation Design of Learning-Based Navigation Maneuver and Robust Path Following Control for Flexible Automated Guided Vehicles |
指導教授: |
蔣欣翰
Chiang, Hsin-Han |
口試委員: |
林志哲
Lin, Chih-Che 李慶鴻 Lee, Ching-Hung 王偉彥 Wang, Wei-Yen 蔣欣翰 Chiang, Hsin-Han |
口試日期: | 2022/01/06 |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 115 |
中文關鍵詞: | 無人搬運車 、機器人作業系統 、基於光達之同步定位與地圖建置 、導航策略 、反光柱輔助定位 、模糊類神經網路 |
英文關鍵詞: | Automated guided vehicles, robot operating system, Lidar SLAM, navigation maneuver, reflector-assisted indoor localization, fuzzy neural network |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202200892 |
論文種類: | 學術論文 |
相關次數: | 點閱:98 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今無人搬運車(Automated Guided Vehicle,AGV)引入製造工廠和自動化倉儲是邁向工業4.0的必備條件,由於實際工廠生產線環境中高度動態與不確定性,本論文開發一套強化AGV定位精確性與導航策略。首先提出具有低成本效益之反光柱輔助定位技術,利用反光點作為環境中的分離特徵進行重新定位,能有效改善自適應蒙地卡羅定位定位(Adaptive Monte Carlo Localization, AMCL) 演算法在環境特徵不明顯或環境地圖邊界過於破碎,所導致的迷航或定位失效的問題。接著,本論文提出可適應AGV動作的路徑跟隨控制設計,並整合至機器人作業系統(Robot Operating System, ROS)的軟體環境,此種設計除了可延伸應用於相關自主式無人搬運車軌跡追蹤控制策略之外,基於模糊神經網路架構並提出新的誤差計算方式,可以在模擬環境搭配AGV運動模型來預先進行控制參數自動調整。本論文開發的AGV導航控制先使用MATLAB模擬環境來實現所提出的用於導航控制的模糊神經網絡(Fuzzy Neural Network, FNN)策略,對軌跡跟踪中的模擬結果評估,以驗證所提出的AGV控制策略的有效性。由實驗測試結果說明,本論文提出的反光柱輔助定位搭配AMCL定位演算法能有效克服累積定位誤差之外,進一步整合強健式路徑跟隨控制與學習式導航策略,能展現本論文所開發AGV技術在實際工廠生產線環境中之高度應用價值。
Nowadays, automated guided vehicles (AGVs) have become a bridge for manufacturing factories and warehousing industries to enter Industry 4.0. This study focuses on the development of sophisticated localization algorithms and navigation algorithms based on AGVs. First, a reflector-assisted localization method is proposed, which is different from the Adaptive Monte Carlo Localization (AMCL) algorithm used by most mobile robots. With the installed reflectors, this method improves the problem of AMCL localization when the environment features are not obvious or the boundaries of map are broken, which may lead to the problem of getting lost its position or localization failure. The current position of the AGV is calculated and localized using reflection points as the second feature of the environment, especially while the AMCL localization fails and the supported localization information from the reflectors can be supplemented in time. In addition, a path following algorithm using intelligent control design is proposed and integrated into the robot operating system (ROS). Based on the fuzzy neural network (FNN) approach, such a proposed intelligent controller can be used in the pre-built virtual environments and the required parameters of FNN can then be determined. The developed control system uses a MATLAB simulation environment to implement the proposed FNN approach in the navigation task of AGVs. The simulation results with the real experiments are evaluated to verify the effectiveness of the proposed navigation and control strategy. To sum up, the demonstration results depict our approach, including the reflector-assisted localization method and path-following control strategy, with the high potential for the production lines of factories.
[1] 【機器人講堂】機器人好多種,該怎麼分類呢?,取自
https://makerpro.cc/2017/11/how-to-classify-robots/
[2] 工業機器人,取自https://www.ia.omron.com/products/family/3664/
[3] 排爆機器人,取自
https://www.popsci.com/police-used-bomb-disposal-robot-to-kill-dallas-shooting-suspect/
[4] 送餐機器人,取自https://ec.ltn.com.tw/article/paper/1297323
[5] 殺菌機器人,取自https://greeninstruments.com/products/uv-disinfection/uvd-robots/
[6] 華碩Zenbo機器人,取自https://www.asus.com/tw/Commercial-Intelligent-Robot/Zenbo/
[7] V. Magnago, L. Palopoli, R. Passerone, D. Fontanelli and D. Macii, "Effective Landmark Placement for Robot Indoor Localization With Position Uncertainty Constraints," in IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 11, pp. 4443-4455, Nov. 2019, doi: 10.1109/TIM.2018.2887071.
[8] Jiang P, Chen L, Guo H, Yu M, Xiong J. “Novel indoor positioning algorithm based on Lidar/inertial measurement unit integrated system.” International Journal of Advanced Robotic Systems. March 2021. doi:10.1177/1729881421999923
[9] W. Chen, J. Xu, X. Zhao, Y. Liu and J. Yang, "Separated Sonar Localization System for Indoor Robot Navigation," in IEEE Transactions on Industrial Electronics, vol. 68, no. 7, pp. 6042-6052, July 2021, doi: 10.1109/TIE.2020.2994856.
[10] W. Wang, Y. Wu, Z. Jiang and J. Qi, "A Clutter-Resistant SLAM Algorithm for Autonomous Guided Vehicles in Dynamic Industrial Environment," in IEEE Access, vol. 8, pp. 109770-109782, 2020, doi: 10.1109/ACCESS.2020.3001756.
[11] C. Reinke and P. Beinschob, "Strategies for contour-based self-localization in large-scale modern warehouses," 2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP), 2013, pp. 223-227, doi: 10.1109/ICCP.2013.6646112.
[12] Zhou, H.; Chou, W.; Tuo, W.; Rong, Y.; Xu, S. Mobile Manipulation Integrating Enhanced AMCL High-Precision Location and Dynamic Tracking Grasp. Sensors 2020, 20, 6697. https://doi.org/10.3390/s20226697
[13] G. Grisetti, C. Stachniss and W. Burgard., “Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters,” IEEE Transactions on Robotics, vol. 23, no. 1, pp. 34-46, Feb. 2007.
[14] Yilmaz, Abdurrahman and Hakan Temeltas. “Self-adaptive Monte Carlo method for indoor localization of smart AGVs using LIDAR data.” Robotics Auton. Syst. 122 (2019): n. pag.
[15] B. P. E. Alvarado Vasquez, R. Gonzalez, F. Matia and P. De La Puente, "Sensor Fusion for Tour-Guide Robot Localization," in IEEE Access, vol. 6, pp. 78947-78964, 2018, doi: 10.1109/ACCESS.2018.2885648.
[16] P. E. Hart, N. J. Nilsson and B. Raphael, "A Formal Basis for the Heuristic Determination of Minimum Cost Paths," in IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, July 1968, doi: 10.1109/TSSC.1968.300136.
[17] 鄭敬錡,“基於ROS開發工業應用之無人搬運車安全及強健移動式機器人導航策略”,國立臺灣師範大學電機工程學系碩士論文,中華民國109年8月。
[18] Cheng-Jian Lin and Chin-Teng Lin, "An ART-based fuzzy adaptive learning control network," in IEEE Transactions on Fuzzy Systems, vol. 5, no. 4, pp. 477-496, Nov. 1997, doi: 10.1109/91.649900.
[19] 模糊邏輯和神經網絡的結合,取自http://blog.sina.com.cn/s/blog_4f85c04201000bsv.html
[20] ARK-2250L工業電腦,取自
https://www.advantech.tw/products/ark-2000_series_embedded_box_pcs/ark-2250l/mod_66ebc4e0-9a0c-489c-96a5-70a8054e9037
[21] GeChic觸摸顯示器,取自https://www.gechic.com/tw/1102i-touch-monitor/
[22] 閥調式鉛酸蓄電池,取自http://www.yuasa.com.tw/product-detail.php?lang=&nId=36
[23] 電池充電器,取自
https://www.mouser.tw/c/power/battery-chargers/?m=MEAN%20WELL&series=PB-360
[24] 直流無刷馬達,取自https://www.trumman.com.tw/2016products/Overview-main.html
[25] 雷射測距儀,取自https://www.sick.com/de/en/
[26] Logitech 羅技 F710 無線遊戲搖桿,取自
https://www.logitechg.com/zh-tw/products/gamepads/f710-wireless-gamepad.html
[27] 3M反光貼紙,取自https://www.digikey.tw/zh/products/detail/3m/983/5128437
[28] 機器人作業系統ROS,取自https://www.ros.org/
[29] ROS版本,取自http://wiki.ros.org/Distributions
[30] Cartographer,取自https://google-cartographer.readthedocs.io/en/latest/index.html
[31] Ceres Solver,取自http://ceres-solver.org/
[32] Clausen, Jens. “Branch and Bound Algorithms-Principles and Examples.” (2003).
[33] W. Hess, D. Kohler, H. Rapp, and D. Andor, Real-Time Loop Closure in 2D LIDAR SLAM, in Robotics and Automation (ICRA), 2016 IEEE International Conference on. IEEE, 2016. pp. 1271–1278.
[34] Dieter Fox, Wolfram Burgardy, Frank Dellaert, Sebastian Thrun,“Monte Carlo Localization for Mobile Robots,” IEEE International Conference on Robotics and Automation, Detroit, MI, USA, 1999, pp.132-1328.
[35] Schoenberg I.J. (1988) Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions. In: de Boor C. (eds) I. J. Schoenberg Selected Papers. Contemporary Mathematicians. Birkhäuser, Boston, MA. Quarterly of Applied Mathematics 4, no. 1 (1946): 45-99.
[36] C. H. Wang and J. G. Horng. “Constrained minimum-time path planning for robot manipulators via virtual knots of the cubic B-spline functions,” IEEE Trans. Contr., vol. 35, no. 5, May 1990.
[37] C. H. Wang, H. Y. Liu, and R. S. Wen. “Pipelined computations of B-spline curve,” IEEE Truns. Syst. Man Cyber., vol. 22, no. 2, Mar./Apr. 1992.
[38] Chi-Hsu Wang, Wei-Yen Wang, Tsu-Tian Lee and Pao-Shun Tseng, “Fuzzy B-spline membership function (BMF) and its applications in fuzzy-neural control,” in IEEE Transactions on Systems, Man, and Cybernetics, vol. 25, no. 5, pp. 841-851, May 1995.
[39] MATLAB,取自https://www.mathworks.com/products/matlab.html
[40] ROS Stage,取自http://wiki.ros.org/stage
[41] C. Tamantini, F. Scotto di Luzio, F. Cordella, G. Pascarella, F. E. Agro and L. Zollo, "A Robotic Health-Care Assistant for COVID-19 Emergency: A Proposed Solution for Logistics and Disinfection in a Hospital Environment," in IEEE Robotics & Automation Magazine, vol. 28, no. 1, pp. 71-81, March 2021, doi: 10.1109/MRA.2020.3044953.