研究生: |
楊玗修 Yang, Yu-Hsiu |
---|---|
論文名稱: |
開發新型態氮摻雜二硫化鈷催化劑於電催化產氫反應之應用 Development of Active Nitrogen-doped Cobalt Disulfide Catalyst for Hydrogen Evolution Reaction |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 產氫 、電解水 、二硫化鈷 |
英文關鍵詞: | CoS2, Nitrogen-doped |
DOI URL: | https://doi.org/10.6345/NTNU202203613 |
論文種類: | 學術論文 |
相關次數: | 點閱:409 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今石化燃料的快速消耗下,尋找新興替代能源逐漸受到關注。在許多的替代能源中,氫氣燃料電池為最具發展潛力的能源之一,因其原理簡單、在反應時其轉換效能也很高,且過程中不會產生危害地球的溫室氣體,例如二氧化碳或甲烷等產物。
氫氣能從許多來源中產生,而其中電解水(water electrolysis)是最具潛力的方法,然而對於電解水產氫,鉑金屬類的少數貴金屬雖具有相當高效能的催化活性與穩定度,但是其含量稀少與價格昂貴,限制了大量製造與普及化可能性。因此開發便宜且地球含量豐富的析氫觸媒材料為我們研究的重點方向。
本實驗利用水熱法(hydrothermal)配合化學氣相置換法方式,合成氮摻雜之二硫化鈷。藉由異質結構增加活化位置,來提升析氫觸媒的表現。在極化曲線中,我們可以發現此材料擁有很好的催化活性,其Onset potential 約50mV,Tafel slope值約52mV/decade,並展現良好的長程穩定性。
Because of the continuous increase of energy consumption, it is urgent to find the earth-abundant and eco-friendly energy sources. Among all the possible candidates, hydrogen energy has been considered one of the most promising alternatives, which has many advantages, including high energy conversion efficiency, few side reactions, almost complete combustion, and zero greenhouse gas emission.
Among all the hydrogen generation methods, water electrolysis has been considered one of the most potential ways. Regular water electrolysis is operated under the noble metal catalysts, of which the price makes its further applications limited. Therefore, a low-cost, earth-abundant, and easily synthesized alternative should be rendered.
In this work, we have already synthesized nitrogen-doped cobalt (II) disulfide using both hydrothermal and chemical vapor deposition, in which synergistic effects between nitrogen and cobalt disulfide not only produce a higher surface area but also expose a larger fraction of edge sites, leading to significant improvement in the hydrogen evolution reaction. The as-prepared sample was carefully examined under scanning electron microscope and linear sweep voltammetry, showing extra high specific area, ultra low overpotential, and long-term stability.
第七章 參考文獻
[1] http://in.ncu.edu.tw/ncume_ee/tlyeh/shuan/greenhousegas.htm
[2] International Energy Agency (IEA) http://www.iea.org/statistics/
[3] Taiwan word / 燃燒熱http://www.twword.com/wiki/%E7%87%83%
E7%87%92%E7%86%B1
[4] human-geography-ss11 https://human-geography-ss11.wikispaces.
com/Environment
[5] X. Zouc, Y. Zhang, Chem. Soc. Rev., 2015, 44, 5148-5180
[6] J. A. Turner, Science, 1999, 285, 687-689.
[7] US Department of Energy, N.R.E.L., Hydrogen the fuel for the future.
[8] Ajay K. R., Antonie A. C. M. Beenackers, American Institute of
Chemical Engineer, 1998, 44, 2.
[9] 生質能產氫技術 - 國立台北科技大學http://www.cc.ntut.edu.tw/
~yhchen1/bio/4.pdf
[10] 能源與材料 http://www.ch.ntu.edu.tw/~rsliu/pdf97/material/1.pdf
[11] H. Ohya,M Yatabe,M. Aihara, Y. Negishi, T. Takeuchi, International
Journal of Hydrogen Energy, 2002, 27, 369-376.
[12] James E. Funk, International Journal of Hydrogen Energy, 2001, 29,
185-190.
[13] T. Kodama, Y. Kondoh, R. Yamamoto, H. Andou, N Satou, Solar
Energy, 2005, 78, 623-631.
[14] 生質氫能 張嘉修 http://ejournal.stpi.narl.org.tw/NSC_INDEX/
Journal/EJ0001/9801/9801-05.pdf
[15] 化工技術第12卷第10期,2004
[16] Akira Fujishima, Kenichi Honda, Nature, 1972, 238, 37-38
[17] Kudo, A. and Y. Miseki, Chemical Society Reviews, 2009, 253, 38.
[18] Abe, R., Photochemistry Reviews, 2010, 11(4), 179-209.
[19] Electrolysis produces hydrogen http://cafcp.org/stations/howitworks
[20] Janjua, M. B. I. ; Le Roy, R.L. Int. J. Hydrogen Energy, 1985, 10,
11-19.
[21] Mahrous, A. F. M.;Sakr, I. M.; Balabel, A.;Ibrahim, K. Int. J. Therm.
Environ. Eng. 2010, 2, 113-116.
[22] 台灣氫水研究中心http://twhcenter.blogspot.tw/2015/05/blog-
post.html
[23] J. Koryta, J. Dvořák, and L. Kavan, Principles of electrochemistry,
second edition, John Wiley, New York, 1993.
[24] D.R. Crow, Principles and Applications of Electrochemistry, 1994,4,
174-176.
[25] Kunusch, C.; Puleston, P. F.; Mayosky, M. A.; Moré, J. J. Int. J.
Hydrogen Energy 2010, 35, 5876-5881.
[26] A. Roy, S. Watson, and D. Infield, International Journal of Hydrogen
Energy.2006 , 31, 1964-1979.
[27] Roy, A.; Watson, S.; Infield, D. Int. J. Hydrogen Energy 2006, 31,
1964-1979.
[28] A. J. Bard and L. R. Faulkner, “Electrochemical Methods –
Fundamentals and Applications”
[29] Peled, E. J. Electrochem. Soc. 1979, 126, 2047-2051.
[30] Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi,
Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446-6473.
[31] J. K. Norskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen,
J. Electrochem. Soc., 2005, 152, J23–J26.
[32] Carlos G.; Morales-Guio.; Lucas-Alexandre Stern.; Xile Hu.; Chem.
Soc. Rev, 2014, 43, 6555--6569.
[33] Desheng Kong , Judy J. Cha , Haotian Wang , Hye Ryoung Lee,
Energy Environ. Sci., 2013, 6, 3553-3558.
[34] Mark A. Lukowski, Andrew S. Daniel, Fei Meng, Linsen Li, and
Song Jin, J. Am. Chem. Soc., 2013, 135, 10274–10277.
[35] X. Geng, W. Sun, W. Wu , B. Chen, A. Al-Hilo, M. Benamara,
H. Zhu,F. Watanabe, J. Cui, T. Chen. ncomms10672.
[36] Kibsgaard, J., Chen, Zhebo,Reinecke, Benjamin N., Jaramillo,
Thomas F. Nat. Mater. 2012, 11, 963-969.
[37] M. Caban-Acevedo, M. L. Stone, J. R. Schmidt, J. G. Thomas, and
S. Jin, Nat. Mater., 2015, 14, 1245–1251.
[38] A. Wu, C. Tian, H. Yan, Y. Jiao, Q. Yan, G. Yang, H. Fu, RSC.
Nanoscale, 2016, 8, 11052–11059.
[39] D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee
and S. O. Kim, Nano Lett., 2014, 14, 1228–1233.
[40] Yoshikazu Ito, Weitao Cong, Takeshi Fujita, Zheng Tang, and
Mingwei Chen, Angew. Chem. Int. Ed. 2015, 54, 2131 –2136.
[41] W. Zhou, D. Hou, Y. Sang, S. Yao, J. Zhou, G. Li, L. Li, H. Liu and
S. Chen, J. Mater. Chem. A, 2014, 2, 11358–11364
[42] MATERIALS CHARACTERIZATION FACILITY_FE-SEM
http://mcf.tamu.edu/instruments/fe-sem
[43] Wood Iii, D. L.; Yi, J. S.; Nguyen, T. V. Electrochim. Acta 1998, 43,
3795-3809