簡易檢索 / 詳目顯示

研究生: 陳泰廷
Chen, Tai-Ting
論文名稱: 功能特定性指導語的神經回饋訓練對額葉中線Theta與高爾夫推桿表現的影響
Effects of neurofeedback training with function-specific instruction on the frontal midline theta and golf putting performance
指導教授: 洪聰敏
Hung, Tsung-Min
口試委員: 卓俊伶 張育愷 黃崇儒 洪巧菱 洪聰敏
口試日期: 2019/06/24
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 48
中文關鍵詞: 額頂葉網絡預設模式網絡控制訓練方式
英文關鍵詞: frontoparietal network, default mode network, control, protocol
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101676
論文種類: 學術論文
相關次數: 點閱:135下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近期的統合分析顯示傳統的腦波神經回饋訓練 (NFT) 對於改變腦波和改善運動表現的有效性還沒有定論,造成這個結果的一個可能的原因在於口頭指導語。而建立有效的口頭指導語的基本原則在於誘發與目標大腦活動特徵相對應的心智狀態。因此,為了提高腦波NFT訓練方式的有效性,我們在腦波 NFT中提供一種新方法,稱作功能特定性指導語 (function-specific instruction;FSI) 方法。本研究假設單次運用FSI的NFT方法會比傳統的NFT更有效去調節額葉中線Theta (frontal midline theta;FMT) 和促進推桿表現。方法:招募36名年齡36.08±14.08歲,差點14.05±9.43桿的熟練高爾夫選手,並對三組實施連續抽樣:功能特定性指導語組 (FSI;n = 12),傳統指導語組 (TI;n = 12) 和偽回饋組 (SC;n = 12)。在測試前後,每位參與者執行40次距離3米的推桿,並記錄進洞數量。在NFT介入時,要求參與者在單次期間練習50次。結果顯示FSI組在 NFT後顯著改善推桿表現。此外,FSI組顯著減少FMT功率,而SC組顯著增加FMT功率。這些發現意味著,與傳統指導語相比,功能特定性指導語對熟練高爾夫選手提升持續性注意力和推桿表現更為有效。

    A recent meta-analysis showed that so far evidences supporting the effectiveness of EEG neurofeedback training (NFT) protocol in changing EEG and improving sports performance was rather weak and inconclusive. This result may be attributable to methodological limitations such as the verbal instructions. . The basic tenet underpinning an effective verbal instruction is to induce mental states that correspond to targeted brain activity features. Therefore, this study proposed a new approach, namely the function-specific instruction (FSI) approach, to improve the effectiveness of EEG NFT protocol. As such, we hypothesized that a single session of NFT with the FSI approach would be more effective than that of a traditional one in regulating the frontal midline theta (FMT) and improving putting performance. Method: Thirty-six skilled golfers aged 36.08±14.08 years with a handicap 14.05±9.43 were recruited and consecutive sampling method was used to assign these participants into three groups: a function-specific instruction group (FSI; n = 12), a traditional instruction group (TI; n = 12), and a sham control group (SC; n = 12). In the pre-test and post-test, each participant performed 40 putts from a distance of 3m and the numbers of holed putts were recorded. In the NFT intervention, participants were asked to perform 50 trials in a single session. Results showed that the FSI group significantly improved putting performance after NFT. Moreover, the FSI group significantly decreased FMT power, whereas the SC group significantly increased FMT power after NFT. These findings suggested that the function-specific instruction, compared to traditional instruction, is more effective in enhancing sustained attention and putting performance for skilled golfers.

    CHAPTER 1 INTRODUCTION 1 1.1 Background Information 1 1.2 Purpose of Study 4 1.3 Hypotheses 5 1.4 Definition of Terms 5 1.5 Significance of Study 6 1.6 The Assumption 6 1.7 The Delimitation and Limitation of Study 7 CHAPTER 2 LITERATURE REVIEW 9 2.1 Frontal Midline Theta 9 2.2 Neurofeedback Training 11 2.3 Verbal Instruction 16 CHAPTER 3 METHODS 19 3.1 Participants 19 3.2 Golf Putting Task 19 3.3 Instrumentation 20 3.4 Experimental Procedures 21 3.5 Intervention Procedure 22 3.6 Data Analysis 24 3.7 Statistical Analysis 25 CHAPTER 4 RESULTS 27 4.1 Age and Handicap 27 4.2 Putting Performance 27 4.3 EEG 28 4.4 Manipulate Check 30 CHAPTER 5 DISCUSSIONS 32 5.1 Hypothesis 1 32 5.2 Hypothesis 2 34 5.3 Control Analysis 35 5.4 FSI Approach 36 5.5 Related Theories 36 5.6 Directions for Future Research 37 5.7 Conclusion 38 REFERENCES 39

    Albers, C., & Lakens, D. (2018). When power analyses based on pilot data are biased: Inaccurate effect size estimators and follow-up bias. Journal of Experimental Social Psychology, 74, 187-195. https://doi.org/10.1016/j.jesp.2017.09.004
    Aloufi, A. E., Rowe, F. J., & Meyer, G. F. (2021). Behavioural performance improvement in visuomotor learning correlates with functional and microstructural brain changes. Neuroimage, 227, 117673. https://doi.org/10.1016/j.neuroimage.2020.117673
    Archer, A., & Hughes, C. A. (2011). Explicit instruction: Efficient and effective teaching. New York, NY: Guilford Publications.
    Arns, M., Kleinnijenhuis, M., Fallahpour, K., & Breteler, R. (2008). Golf performance enhancement and real-life neurofeedback training using personalized event-locked EEG profiles. Journal of Neurotherapy, 11(4), 11-18. https://doi.org/10.1080/10874200802149656
    Asada, H., Fukuda, Y., Tsunoda, S., Yamaguchi, M., & Tonoike, M. (1999). Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in humans. Neuroscience Letters, 274(1), 29-32.
    Baumeister, J., Reinecke, K., Liesen, H., & Weiss, M. (2008). Cortical activity of skilled performance in a complex sports related motor task. European Journal of Applied Physiology, 104(4), 625-631. https://doi.org/10.1007/s00421-008-0811-x
    Berka, C., Behneman, A., Kintz, N., Johnson, R., & Raphael, G. (2010). Accelerating training using interactive neuro-educational technologies: Applications to archery, golf, and rifle marksmanship. The International Journal of Sport and Society, 1(4), 87-104.
    Bertollo, M., di Fronso, S., Filho, E., Conforto, S., Schmid, M., Bortoli, L., Comani, S., & Robazza, C. (2016). Proficient brain for optimal performance: The MAP model perspective. PeerJ, 4, e2082. https://doi.org/10.7717/peerj.2082
    Boot, W. R., Simons, D. J., Stothart, C., & Stutts, C. (2013). The pervasive problem with placebos in psychology: Why active control groups are not sufficient to rule out placebo effects. Perspectives on Psychological Science, 8(4), 445-454.
    Bortoli, L., Bertollo, M., Hanin, Y., & Robazza, C. (2012). Striving for excellence: A multi-action plan intervention model for shooters. Psychology of Sport and Exercise, 13(5), 693-701. https://doi.org/10.1016/j.psychsport.2012.04.006
    Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1-38.
    Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315(5820), 1860-1862. https://doi.org/10.1126/science.1138071
    Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414-421. https://doi.org/10.1016/j.tics.2014.04.012
    Chauvel, G., Maquestiaux, F., Hartley, A. A., Joubert, S., Didierjean, A., & Masters, R. S. (2012). Age effects shrink when motor learning is predominantly supported by nondeclarative, automatic memory processes: Evidence from golf putting. Quarterly Journal of Experimental Psychology, 65(1), 25-38.
    Cheng, M. Y., Huang, C. J., Chang, Y. K., Koester, D., Schack, T., & Hung, T. M. (2015). Sensorimotor rhythm neurofeedback enhances golf putting performance. Journal of Sport and Exercise Psychology, 37(6), 626-636. https://doi.org/10.1123/jsep.2015-0166
    Christie, S., Bertollo, M., & Werthner, P. (2020). The Effect of an Integrated Neurofeedback and Biofeedback Training Intervention on Ice Hockey Shooting Performance. Journal of Sport and Exercise Psychology, 42(1), 34-47.
    Chuang, L. Y., Huang, C. J., & Hung, T. M. (2013). The differences in frontal midline theta power between successful and unsuccessful basketball free throws of elite basketball players. International Journal of Psychophysiology, 90(3), 321-328. https://doi.org/10.1016/j.ijpsycho.2013.10.002
    Cooke, A. M., Bellomo, E., Gallicchio, G., & Ring, C. (2018). Neurofeedback research in sport: A critical review of the field. Handbook of Sport Neuroscience and Psychophysiology, 282-303.
    DeCharms, R. C., Maeda, F., Glover, G. H., Ludlow, D., Pauly, J. M., Soneji, D., Gabrieli, J. D., & Mackey, S. C. (2005). Control over brain activation and pain learned by using real-time functional MRI. Proceedings of the National Academy of Sciences, 102(51), 18626-18631. https://doi.org/10.1073/pnas.0505210102
    Doppelmayr, M., Finkenzeller, T., & Sauseng, P. (2008). Frontal midline theta in the pre-shot phase of rifle shooting: Differences between experts and novices. Neuropsychologia, 46(5), 1463-1467. https://doi.org/10.1016/j.neuropsychologia.2007.12.026
    Enriquez-Geppert, S., Huster, R. J., Figge, C., & Herrmann, C. S. (2014). Self-regulation of frontal-midline theta facilitates memory updating and mental set shifting. Frontiers in Behavioral Neuroscience, 8, 420. https://doi.org/10.3389/fnbeh.2014.00420
    Enriquez-Geppert, S., Huster, R. J., & Herrmann, C. S. (2017). EEG-neurofeedback as a tool to modulate cognition and behavior: A review tutorial. Frontiers in Human Neuroscience, 11, 51.
    Eschmann, K. C., Bader, R., & Mecklinger, A. (2018). Topographical differences of frontal-midline theta activity reflect functional differences in cognitive control abilities. Brain and Cognition, 123, 57-64.
    Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. https://doi.org/10.3758/BF03193146
    Gevins, A., Smith, M. E., McEvoy, L., & Yu, D. (1997). High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7(4), 374-385. https://doi.org/10.1093/cercor/7.4.374
    Gong, A., Gu, F., Nan, W., Qu, Y., Jiang, C., & Fu, Y. (2021). A review of neurofeedback training for improving sport performance from the perspective of user experience. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.638369
    Gong, A., Nan, W., Yin, E., Jiang, C., & Fu, Y. (2020). Efficacy, trainability, and neuroplasticity of smr vs. alpha rhythm shooting performance neurofeedback training. Frontiers in Human Neuroscience, 14. https://doi.org/10.3389/fnhum.2020.00094
    Graczyk, M., Pachalska, M., Ziolkowski, A., Manko, G., Lukaszewska, B., Kochanowicz, K., ... & Kropotow, I. D. (2014). Neurofeedback training for peak performance. Annals of Agricultural and Environmental Medicine, 21(4), 871-875
    Gruzelier, J. H. (2014). EEG-neurofeedback for optimising performance. III: A review of methodological and theoretical considerations. Neuroscience and Biobehavioral Reviews, 44, 159-182.
    Hammond, D. C. (2011). What is neurofeedback: An update. Journal of Neurotherapy, 15(4), 305-336. https://doi.org/10.1080/10874208.2011.623090
    Harmison, R. J. (2006). Peak performance in sport: Identifying ideal performance states and developing athletes' psychological skills. Professional Psychology: Research and Practice, 37(3), 233. https://doi.org/10.1037/0735-7028.37.3.233
    Hopkin, C. R., Hoyle, R. H., & Gottfredson, N. C. (2015). Maximizing the yield of small samples in prevention research: A review of general strategies and best practices. Prevention Science, 16(7), 950-955. https://doi.org/10.1007/s11121-014-0542-7
    Hung, T. M., & Cheng, M. Y. (2018). Neurofeedback in Sport: Theory, Methods, Research, and Efficacy (R. Carlstedt & M. Balconi, Eds. 1st ed.). Routledge.
    Hsieh, L. T., Ekstrom, A. D., & Ranganath, C. (2011). Neural oscillations associated with item and temporal order maintenance in working memory. Journal of Neuroscience, 31(30), 10803-10810.
    Hsieh, L. T., & Ranganath, C. (2014). Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. Neuroimage, 85, 721-729.
    Jager, J., Putnick, D. L., & Bornstein, M. H. (2017). II. More than just convenient: The scientific merits of homogeneous convenience samples. Monographs of the Society for Research in Child Development, 82(2), 13-30.
    Kao, S. C., Huang, C. J., & Hung, T. M. (2013). Frontal midline theta is a specific indicator of optimal attentional engagement during skilled putting performance. Journal of Sport and Exercise Psychology, 35(5), 470-478. https://doi.org/10.1123/jsep.35.5.470
    Kao, S. C., Huang, C. J., & Hung, T. M. (2014). Neurofeedback training reduces frontal midline theta and improves putting performance in expert golfers. Journal of Applied Sport Psychology, 26(3), 271-286. https://doi.org/10.1080/10413200.2013.855682
    Kirkham, A. J., Breeze, J. M., & Marί-Beffa, P. (2012). The impact of verbal instructions on goal-directed behaviour. Acta Psychologica, 139(1), 212-219. https://doi.org/10.1016/j.actpsy.2011.09.016
    Krane, V., & Williams, J. (2006). Psychological characteristics of peak performance. In J. M. Williams (Ed.), Applied sport psychology: Personal growth to peak performance (pp. 207-227). New York: McGraw-Hill.
    Landers, D. M., Petruzzello, S. J., Salazar, W., Crews, D. J., Kubitz, K. A., Gannon, T. L., & Han, M. (1991). The influence of electrocortical biofeedback on performance in pre-elite archers. Medicine and Science in Sports and Exercise, 23(1), 123-129. https://doi.org/10.1249/00005768-199101000-00018
    Landin, D. (1994). The role of verbal cues in skill learning. Quest, 46, 299-313.
    Luo, T. Z., & Maunsell, J. H. (2019). Attention can be subdivided into neurobiological components corresponding to distinct behavioral effects. Proceedings of the National Academy of Sciences, 116(52), 26187-26194. https://doi.org/10.1073/pnas.1902286116
    Mansouri, J., Rostami, R., Shahvaroughi, A., & Ranjbar, S. (2020). The Effectiveness of Neurofeedback Training on Enhancing Discrete Skills of Athletes: A Review Study. Journal of Motor Learning and Movement, 12(2), 187-204.
    Masters, R., & Maxwell, J. (2008). The theory of reinvestment. International Review of Sport and Exercise Psychology, 1(2), 160-183. https://doi.org/10.1080/17509840802287218
    Maurer, U., Brem, S., Liechti, M., Maurizio, S., Michels, L., & Brandeis, D. (2015). Frontal midline theta reflects individual task performance in a working memory task. Brain Topography, 28(1), 127-134. https://doi.org/10.1007/s10548-014-0361-y
    Mayer, J. S., Roebroeck, A., Maurer, K., & Linden, D. E. (2010). Specialization in the default mode: Task‐induced brain deactivations dissociate between visual working memory and attention. Human Brain Mapping, 31(1), 126-139.
    Meier, C., Frank, C., Gröben, B., & Schack, T. (2020). Verbal instructions and motor learning: How analogy and explicit instructions influence the development of mental representations and tennis serve performance. Frontiers in Psychology, 11, 2. https://doi.org/10.3389/fpsyg.2020.00002
    Mirifar, A., Beckmann, J., & Ehrlenspiel, F. (2017). Neurofeedback as supplementary training for optimizing athletes’ performance: A systematic review with implications for future research. Neuroscience and Biobehavioral Reviews, 75, 419-432.
    Missonnier, P., Deiber, M. P., Gold, G., Millet, P., Gex-Fabry Pun, M., Fazio-Costa, L., …,
    & Ibáñez, V. (2006). Frontal theta event-related synchronization: comparison of directed attention and working memory load effects. Journal of Neural Transmission, 113(10), 1477-1486.
    Mitchell, D. J., McNaughton, N., Flanagan, D., & Kirk, I. J. (2008). Frontal-midline theta from the perspective of hippocampal “theta”. Progress in Neurobiology, 86(3), 156-185.
    Morgan, S. J., & Mora, J. A. M. (2017). Effect of heart rate variability biofeedback on sport performance, a systematic review. Applied Psychophysiology and Biofeedback, 42(3), 235-245. https://doi.org/10.1007/s10484-017-9364-2
    Muñoz-Moldes, S., & Cleeremans, A. (2020). Delineating implicit and explicit processes in neurofeedback learning. Neuroscience and Biobehavioral Reviews. https://doi.org/10.1016/j.neubiorev.2020.09.003
    Nigbur, R., Ivanova, G., & Stürmer, B. (2011). Theta power as a marker for cognitive interference. Clinical Neurophysiology, 122(11), 2185-2194. https://doi.org/10.1016/j.clinph.2011.03.030
    Noonan, M. P., Crittenden, B. M., Jensen, O., & Stokes, M. G. (2018). Selective inhibition of distracting input. Behavioural Brain Research, 355, 36-47. https://doi.org/10.1016/j.bbr.2017.10.010
    Norris, J. M., & Ortega, L. (2000). Effectiveness of L2 instruction: A research synthesis and quantitative meta‐analysis. Language Learning, 50(3), 417-528.
    Osaka, M., Komori, M., Morishita, M., & Osaka, N. (2007). Neural bases of focusing attention in working memory: An fMRI study based on group differences. Cognitive, Affective, and Behavioral Neuroscience, 7(2), 130-139. https://doi.org/10.3758/CABN.7.2.130
    Paul, M., Ganesan, S., Sandhu, J. S., & Simon, J. V. (2012). Effect of sensory motor rhythm neurofeedback on psycho-physiological, electro-encephalographic measures and performance of archery players. Ibnosina Journal of Medicine & Biomedical Sciences, 4(2), 32-39.
    Rao, C. R. (1951). An asymptotic expansion of the distribution of Wilk's criterion. Bulletin of the International Statistical Institute, 33(2), 177-180.
    Rogala, J., Jurewicz, K., Paluch, K., Kublik, E., Cetnarski, R., & Wróbel, A. (2016). The Do's and Don'ts of neurofeedback training: a review of the controlled studies using healthy adults. Frontiers in Human Neuroscience, 10, 301.
    Ring, C., Cooke, A., Kavussanu, M., McIntyre, D., & Masters, R. (2015). Investigating the efficacy of neurofeedback training for expediting expertise and excellence in sport. Psychology of Sport and Exercise, 16, 118-127.
    Roberts, B. M., Hsieh, L. T., & Ranganath, C. (2013). Oscillatory activity during maintenance of spatial and temporal information in working memory. Neuropsychologia, 51(2), 349-357.
    Rostami, R., Sadeghi, H., Karami, K. A., Abadi, M. N., & Salamati, P. (2012). The effects of neurofeedback on the improvement of rifle shooters' performance. Journal of Neurotherapy, 16(4), 264-269. https://doi.org/10.1080/10874208.2012.730388
    Sauseng, P., Hoppe, J., Klimesch, W., Gerloff, C., & Hummel, F. C. (2007). Dissociation of sustained attention from central executive functions: local activity and interregional connectivity in the theta range. European Journal of Neuroscience, 25(2), 587-593.
    Scheeringa, R., Bastiaansen, M. C., Petersson, K. M., Oostenveld, R., Norris, D. G., & Hagoort, P. (2008). Frontal theta EEG activity correlates negatively with the default mode network in resting state. International Journal of Psychophysiology, 67(3), 242-251.
    Scheinost, D., Stoica, T., Saksa, J., Papademetris, X., Constable, R., Pittenger, C., & Hampson, M. (2013). Orbitofrontal cortex neurofeedback produces lasting changes in contamination anxiety and resting-state connectivity. Translational Psychiatry, 3(4), e250-e250. https://doi.org/10.1038/tp.2013.24
    Semlitsch, H. V., Anderer, P., Schuster, P., & Presslich, O. (1986). A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology, 23(6), 695-703. https://doi.org/10.1111/j.1469-8986.1986.tb00696.x
    Sherlin, L. H., Ford, N. C. L., Baker, A. R., & Troesch, J. (2015). Observational report of the effects of performance brain training in collegiate golfers. Biofeedback, 43(2), 64-72. https://doi.org/10.5298/1081-5937-43.2.06
    Smeeton, N. J., Williams, A. M., Hodges, N. J., & Ward, P. (2005). The relative effectiveness of various instructional approaches in developing anticipation skill. Journal of Experimental Psychology: Applied, 11(2), 98-110.
    Soleimani, H., Jahangiri, K., & Gohar, M. J. (2015). Effect of explicit and implicit instruction
    on implicit knowledge of English past simple tense. International Journal of Asian
    Social Science, 5(5), 257-265.
    Sormaz, M., Murphy, C., Wang, H.-t., Hymers, M., Karapanagiotidis, T., Poerio, G., Margulies, D. S., Jefferies, E., & Smallwood, J. (2018). Default mode network can support the level of detail in experience during active task states. Proceedings of the National Academy of Sciences, 115(37), 9318-9323. https://doi.org/10.1073/pnas.1721259115
    Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage, 53(1), 303-317.
    Sweeting, T., & Rink, J. E. (1999). Effects of direct instruction and environmentally designed instruction on the process and product characteristics of a fundamental skill. Journal of Teaching in Physical Education, 18(2), 216-233.
    Turner, B. O., Paul, E. J., Miller, M. B., & Barbey, A. K. (2018). Small sample sizes reduce the replicability of task-based fMRI studies. Communications Biology, 1(1), 1-10. https://doi.org/10.1038/s42003-018-0073-z
    Van Doren, J., Arns, M., Heinrich, H., Vollebregt, M. A., Strehl, U., & Loo, S. K. (2019). Sustained effects of neurofeedback in ADHD: A systematic review and meta-analysis. European Child & Adolescent Psychiatry, 28(3), 293-305.
    Vernon, D. J. (2005). Can neurofeedback training enhance performance? An evaluation of the evidence with implications for future research. Applied Psychophysiology and Biofeedback, 30(4), 347-364. https://doi.org/10.1007/s10484-005-8421-4
    Wang, K.-P., Frank, C., Tsai, Y.-y., Lin, K.-H., Chen, T.-T., Cheng, M.-Y., Huang, C.-J., Hung, T.-M., & Schack, T. (2021). Superior Performance in Skilled Golfers Characterized by Dynamic Neuromotor Processes Related to Attentional Focus. Frontiers in Psychology, 12(337). https://doi.org/10.3389/fpsyg.2021.633228
    Wang, K. P., Cheng, M. Y., Chen, T. T., Chang, Y. K., Huang, C. J., Feng, J., Hung, T. M., & Ren, J. (2019). Experts’ successful psychomotor performance was characterized by effective switch of motor and attentional control. Psychology of Sport and Exercise, 43, 374-379. https://doi.org/10.1016/j.psychsport.2019.04.006
    Wang, K. P., Cheng, M. Y., Chen, T. T., Huang, C. J., Schack, T., & Hung, T. M. (2020). Elite golfers are characterized by psychomotor refinement in cognitive-motor processes. Psychology of Sport and Exercise, 50, 101739. https://doi.org/10.1016/j.psychsport.2020.101739
    Weinberg, R. S., & Gould, D. (2018). Foundations of sport and exercise psychology (7th ed.). Champaign, IL: Human Kinetics.
    Weissman, D. H., Roberts, K. C., Visscher, K. M., & Woldorff, M. G. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9(7), 971-978.
    Woodford, H. J., & Price, C. I. (2007). EMG biofeedback for the recovery of motor function after stroke. Cochrane Database of Systematic Reviews(2), 1-26. https://doi.org/10.1002/14651858.CD004585.pub2
    Wulf, G., & Prinz, W. (2001). Directing attention to movement effects enhances learning: A review. Psychonomic Bulletin & Review, 8(4), 648-660.
    Xiang, M. Q., Hou, X. H., Liao, B. G., Liao, J. W., & Hu, M. (2018). The effect of neurofeedback training for sport performance in athletes: A meta-analysis. Psychology of Sport and Exercise, 36, 114-122.
    Zhao, X., Song, S., Ye, Q., Guo, J., & Yao, L. (2013). Causal interaction following the alteration of target region activation during motor imagery training using real-time fMRI. Frontiers in Human Neuroscience, 7, 866.
    Zoefel, B., Huster, R. J., & Herrmann, C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. Neuroimage, 54(2), 1427-1431.
    Zotev, V., Phillips, R., Young, K. D., Drevets, W. C., & Bodurka, J. (2013). Prefrontal control of the amygdala during real-time fMRI neurofeedback training of emotion regulation. PloS one, 8(11), e79184. https://doi.org/10.1371/journal.pone.0079184

    下載圖示
    QR CODE