研究生: |
魏軒晧 Wei, Xuan-Hao |
---|---|
論文名稱: |
結合硫化二維硒化鎘及中孔洞氧化石墨烯應用於光催化水分解反應 Development of Photocatalyst for Water-Splitting via Combination of 2D Sulfurized Cadmium Selenide and Mesoporous Graphene Oxide Nanocomposites |
指導教授: |
劉沂欣
Liu, Yi-Hsin |
口試委員: |
謝明惠
Shieh, Ming-Huey 高琨哲 Kao, Kun-Che 劉沂欣 Liu, Yi-Hsin |
口試日期: | 2022/07/25 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 硒化鎘 、中孔半導體單層奈米片 、光催化水分解產氫 、中孔洞碳材 、硫摻雜還原氧化石墨烯 |
英文關鍵詞: | cadmium selenide, Mesoporous semiconductor monolayer nanosheets, Photocatalytic water splitting, Mesoporous carbon, sulfur-doped reduced graphene oxide |
研究方法: | 實驗設計法 、 比較研究 、 觀察研究 、 內容分析法 |
DOI URL: | http://doi.org/10.6345/NTNU202201796 |
論文種類: | 學術論文 |
相關次數: | 點閱:93 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用具有高度結晶性的半導體單層奈米片CdSe(en)0.5作為觸媒及吸光材料,藉由硫化後產物進行光催化水分解產氫反應。比較硫化過程中硫前驅物的反應性(Na2S/Na2SO3, S8),及在不同氣氛下(氮氣、空氣)硫化程度對奈米片中孔洞生成、光催化水分解產氫效率之影響。同時結合本實驗室中孔洞硫化石墨烯-沸石複合奈米粒子(S-MGN),於硫化過程中與二維奈米片結合形成異質結構,藉此有效提升電荷分離效率及產氫結果 (124 umol h-1)。在研究鑑定上,我們利用各類結構定性及元素定量分析技術,包括穿透式電子顯微鏡、X光粉末繞射、螢光光譜、紫外光-可見光吸收光譜、元素分析、X光光電子能譜、電子自旋共振儀、電性分析等儀器鑑定,分析材料中元素鍵結及自由基特性,佐以氣相層析阻擋放電離子偵測器(GC-BID)探討硫化及碳材在光催化水分解所扮演的角色。
In this study, the highly crystalline semiconductor monolayer nanosheets, CdSe(en)0.5, after sulfurization, was used as catalysts and photon absorbing materials for photocatalytic water splitting to produce hydrogen. The reactivity of sulfur precursors (Na2S/Na2SO3, S8) in the sulfurization process and the effect of sulfurization degree under different atmospheres (nitrogen, air) on the mesoporous formation were investigated toward the efficiency of photocatalytic water splitting for hydrogen production. Moreover, combined heterostructues of sulfided mesoporous graphene-oxide nanoparticles (S-MGN) and the nanosheets effectively improve charge separation efficiency and hydrogen production (124 umol h-1). Various qualitatively structural and quantitatively elemental analysis techniques, including transmission electron microscopy, X-ray powder diffraction, fluorescence spectroscopy, UV-visible absorption, elemental analysis, X-ray photoelectron spectroscopy, electron paramagnetic resonance and electrical measurement other instruments were used to identify chemical bonding and radical properties in heterostructures. The roles of sulfur and graphene materials were explored in photocatalytic water splitting evaluated by gas chromatography barrier discharge ion detector (GC-BID).
1. Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature materials 2009, 8 (1), 76-80.
2. Zhou, X.; Liu, N.; Schmidt, J.; Kahnt, A.; Osvet, A.; Romeis, S.; Zolnhofer, E. M.; Marthala, V. R. R.; Guldi, D. M.; Peukert, W., Noble‐Metal‐Free Photocatalytic Hydrogen Evolution Activity: The Impact of Ball Milling Anatase Nanopowders with TiH2. Advanced Materials 2017, 29 (5), 1604747.
3. Maeda, K., Photocatalytic water splitting using semiconductor particles: history and recent developments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2011, 12 (4), 237-268.
4. Li, Y.; Li, Y.-L.; Sa, B.; Ahuja, R., Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective. Catalysis Science & Technology 2017, 7 (3), 545-559.
5. Ganguly, P.; Byrne, C.; Breen, A.; Pillai, S. C., Antimicrobial activity of photocatalysts: fundamentals, mechanisms, kinetics and recent advances. Applied Catalysis B: Environmental 2018, 225, 51-75.
6. Ida, S.; Ishihara, T., Recent progress in two-dimensional oxide photocatalysts for water splitting. The Journal of Physical Chemistry Letters 2014, 5 (15), 2533-2542.
7. Pacile, D.; Meyer, J.; Girit, Ç.; Zettl, A., The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Applied Physics Letters 2008, 92 (13), 133107.
8. Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B., Two-dimensional colloidal nanocrystals. Chemical reviews 2016, 116 (18), 10934-10982.
9. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A., 2D transition metal dichalcogenides. Nature Reviews Materials 2017, 2 (8), 1-15.
10. Zhang, K.; Feng, Y.; Wang, F.; Yang, Z.; Wang, J., Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. Journal of Materials Chemistry C 2017, 5 (46), 11992-12022.
11. Wen, J.; Xie, J.; Chen, X.; Li, X., A review on g-C3N4-based photocatalysts. Applied surface science 2017, 391, 72-123.
12. Low, J.; Cao, S.; Yu, J.; Wageh, S., Two-dimensional layered composite photocatalysts. Chemical communications 2014, 50 (74), 10768-10777.
13. Ithurria, S.; Tessier, M.; Mahler, B.; Lobo, R.; Dubertret, B.; Efros, A. L., Colloidal nanoplatelets with two-dimensional electronic structure. Nature materials 2011, 10 (12), 936-941.
14. Tessier, M. D.; Javaux, C.; Maksimovic, I.; Loriette, V.; Dubertret, B., Spectroscopy of single CdSe nanoplatelets. ACS nano 2012, 6 (8), 6751-6758.
15. Benchamekh, R.; Gippius, N. A.; Even, J.; Nestoklon, M.; Jancu, J.-M.; Ithurria, S.; Dubertret, B.; Efros, A. L.; Voisin, P., Tight-binding calculations of image-charge effects in colloidal nanoscale platelets of CdSe. Physical Review B 2014, 89 (3), 035307.
16. Feldmann, J.; Peter, G.; Göbel, E.; Dawson, P.; Moore, K.; Foxon, C.; Elliott, R., Linewidth dependence of radiative exciton lifetimes in quantum wells. Physical review letters 1987, 59 (20), 2337.
17. Li, Q.; Liu, Q.; Schaller, R. D.; Lian, T., Reducing the optical gain threshold in two-dimensional CdSe nanoplatelets by the giant oscillator strength transition effect. The Journal of Physical Chemistry Letters 2019, 10 (7), 1624-1632.
18. Li, Q.; Lian, T., Area-and thickness-dependent biexciton Auger recombination in colloidal CdSe nanoplatelets: breaking the “Universal Volume Scaling Law”. Nano letters 2017, 17 (5), 3152-3158.
19. Grim, J. Q.; Christodoulou, S.; Di Stasio, F.; Krahne, R.; Cingolani, R.; Manna, L.; Moreels, I., Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nature nanotechnology 2014, 9 (11), 891-895.
20. Klimov, V. I.; Ivanov, S. A.; Nanda, J.; Achermann, M.; Bezel, I.; McGuire, J. A.; Piryatinski, A., Single-exciton optical gain in semiconductor nanocrystals. Nature 2007, 447 (7143), 441-446.
21. Klimov, V.; Mikhailovsky, A.; Xu, S.; Malko, A.; Hollingsworth, J.; Leatherdale, a. C.; Eisler, H.-J.; Bawendi, M., Optical gain and stimulated emission in nanocrystal quantum dots. science 2000, 290 (5490), 314-317.
22. Li, Q.; Lian, T., Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets. Accounts of Chemical Research 2019, 52 (9), 2684-2693.
23. Yu, J.; Chen, R., Optical properties and applications of two‐dimensional CdSe nanoplatelets. InfoMat 2020, 2 (5), 905-927.
24. Kulakovich, O.; Strekal, N.; Yaroshevich, A.; Maskevich, S.; Gaponenko, S.; Nabiev, I.; Woggon, U.; Artemyev, M., Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Letters 2002, 2 (12), 1449-1452.
25. Zhukovskyi, M.; Tongying, P.; Yashan, H.; Wang, Y.; Kuno, M., Efficient photocatalytic hydrogen generation from Ni nanoparticle decorated CdS nanosheets. ACS Catalysis 2015, 5 (11), 6615-6623.
26. Magana, D.; Perera, S. C.; Harter, A. G.; Dalal, N. S.; Strouse, G. F., Switching-on superparamagnetism in Mn/CdSe quantum dots. Journal of the American Chemical Society 2006, 128 (9), 2931-2939.
27. Li, C.; Hsu, S.-C.; Lin, J.-X.; Chen, J.-Y.; Chuang, K.-C.; Chang, Y.-P.; Hsu, H.-S.; Chen, C.-H.; Lin, T.-S.; Liu, Y.-H., Giant zeeman splitting for monolayer nanosheets at room temperature. Journal of the American Chemical Society 2020, 142 (49), 20616-20623.
28. Yu, J. H.; Liu, X.; Kweon, K. E.; Joo, J.; Park, J.; Ko, K.-T.; Lee, D. W.; Shen, S.; Tivakornsasithorn, K.; Son, J. S., Giant Zeeman splitting in nucleation-controlled doped CdSe: Mn2+ quantum nanoribbons. Nature materials 2010, 9 (1), 47-53.
29. Vlaskin, V. A.; Barrows, C. J.; Erickson, C. S.; Gamelin, D. R., Nanocrystal diffusion doping. Journal of the American Chemical Society 2013, 135 (38), 14380-14389.
30. Saidzhonov, B.; Kozlovsky, V.; Zaytsev, V.; Vasiliev, R., Ultrathin CdSe/CdS and CdSe/ZnS core-shell nanoplatelets: The impact of the shell material on the structure and optical properties. Journal of Luminescence 2019, 209, 170-178.
31. Li, Z. J.; Wang, J. J.; Li, X. B.; Fan, X. B.; Meng, Q. Y.; Feng, K.; Chen, B.; Tung, C. H.; Wu, L. Z., An Exceptional Artificial Photocatalyst, Nih‐CdSe/CdS Core/Shell Hybrid, Made In Situ from CdSe Quantum Dots and Nickel Salts for Efficient Hydrogen Evolution. Advanced Materials 2013, 25 (45), 6613-6618.
32. Kamat, P. V., Graphene-based nanoassemblies for energy conversion. The Journal of Physical Chemistry Letters 2011, 2 (3), 242-251.
33. Geim, A. K.; Novoselov, K. S., The rise of graphene. In Nanoscience and technology: a collection of reviews from nature journals, World Scientific: 2010; pp 11-19.
34. Cao, A.; Liu, Z.; Chu, S.; Wu, M.; Ye, Z.; Cai, Z.; Chang, Y.; Wang, S.; Gong, Q.; Liu, Y., A facile one‐step method to produce graphene–CdS quantum dot nanocomposites as promising optoelectronic materials. Advanced materials 2010, 22 (1), 103-106.
35. Lin, Y.; Zhang, K.; Chen, W.; Liu, Y.; Geng, Z.; Zeng, J.; Pan, N.; Yan, L.; Wang, X.; Hou, J., Dramatically enhanced photoresponse of reduced graphene oxide with linker-free anchored CdSe nanoparticles. ACS nano 2010, 4 (6), 3033-3038.
36. Luo, J.; Kim, J.; Huang, J., Material processing of chemically modified graphene: some challenges and solutions. Accounts of chemical research 2013, 46 (10), 2225-2234.
37. Loh, K. P.; Bao, Q.; Ang, P. K.; Yang, J., The chemistry of graphene. Journal of Materials Chemistry 2010, 20 (12), 2277-2289.
38. Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G., Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society 2008, 130 (18), 5856-5857.
39. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chemical society reviews 2010, 39 (1), 228-240.
40. Mao, S.; Pu, H.; Chen, J., Graphene oxide and its reduction: modeling and experimental progress. RSC Adv 2: 2643–2662. 2012.
41. Gómez-Navarro, C.; Meyer, J. C.; Sundaram, R. S.; Chuvilin, A.; Kurasch, S.; Burghard, M.; Kern, K.; Kaiser, U., Atomic structure of reduced graphene oxide. Nano letters 2010, 10 (4), 1144-1148.
42. Eda, G.; Mattevi, C.; Yamaguchi, H.; Kim, H.; Chhowalla, M., Insulator to semimetal transition in graphene oxide. The Journal of Physical Chemistry C 2009, 113 (35), 15768-15771.
43. Fu, J.; Yu, J.; Jiang, C.; Cheng, B., g‐C3N4‐Based heterostructured photocatalysts. Advanced Energy Materials 2018, 8 (3), 1701503.
44. Li, Y.; Li, X.; Zhang, H.; Fan, J.; Xiang, Q., Design and application of active sites in g-C3N4-based photocatalysts. Journal of Materials Science & Technology 2020, 56, 69-88.
45. Li, X.; Zhang, J.; Huo, Y.; Dai, K.; Li, S.; Chen, S., Two-dimensional sulfur-and chlorine-codoped g-C3N4/CdSe-amine heterostructures nanocomposite with effective interfacial charge transfer and mechanism insight. Applied Catalysis B: Environmental 2021, 280, 119452.
46. Perreault, F.; De Faria, A. F.; Elimelech, M., Environmental applications of graphene-based nanomaterials. Chemical Society Reviews 2015, 44 (16), 5861-5896.
47. Tian, Z.; Li, J.; Zhu, G.; Lu, J.; Wang, Y.; Shi, Z.; Xu, C., Facile synthesis of highly conductive sulfur-doped reduced graphene oxide sheets. Physical Chemistry Chemical Physics 2016, 18 (2), 1125-1130.
48. 謝宗恩(2018)。魔術尺寸-硒化鎘奈米團簇物之結構解析與陰/陽離子取代之二維結構硒化鎘奈米片之應用探討。台北:國立臺灣師範大學。
49. 李尉賑 (2020)。二維中孔硒化鎘半導體材料合成、結構解析與應用。台北:國立臺灣師範大學。
50. 張云柔 (2019)。中孔洞沸石奈米粒子之鋰修飾以及石墨化之 合成、鑑定及應用。台北:國立臺灣師範大學。
51. 張學仁 (2018)。具半導體特性之複合中孔薄膜之合成、鑑定及應用。台北:國立臺灣師範大學。
52. 戴子鈞 (2017)以中孔沸石限制硫化銀奈米粒子及氧化石墨烯之合成、鑑定與應用。台北:國立臺灣師範大學。