簡易檢索 / 詳目顯示

研究生: 柳承佑
Liu, Cheng-You
論文名稱: 以酪氨酸酶、殼聚醣、氧化還原石墨烯製備高靈敏度和選擇性的網印印刷碳電極用於多巴胺檢測
High Sensitivity and Selectivity Screen-Printed Carbon Electrode Fabricated by Tyrosinase, Chitosan, and Reduced Graphene Oxide for Detection of Dopamine
指導教授: 葉怡均
Yeh, Yi-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 60
中文關鍵詞: 網印印刷電化學生物感測器酪氨酸酶殼聚醣多巴胺氧化還原石墨烯
英文關鍵詞: screen-printed electrochemical biosensor, tyrosinase, chitosan, dopamine, reduced graphene oxide
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.026.2018.B05
論文種類: 學術論文
相關次數: 點閱:140下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多巴胺是人體中重要的神經傳遞物質,其對於帕金森氏症、阿茲海默症皆有重大的影響。在實驗中以酪胺酸酶 (tyrosinase)、殼聚醣 (chitosan)、氧化還原石墨烯 (reduced graphite oxide,rGO) 修飾於網印印刷碳電極 (Screen-printed carbon electrode,SPCE) 作為電化學生物感測器,用於多巴胺的檢測。並且針對抗壞血酸以及尿酸,這類在生物體內常見的干擾物,可以避免此感測器不被干擾而影響偵測誤判。利用循環伏安法測量證明了,所提出的電化學感測器的高靈敏度和選擇性,偵測極限為22 nM,並且與先前文獻相比,有較廣的線性範圍為0.4-8 μM和40-500 μM。此外,所提出的電極被應用於健康人體的尿液樣品時,取得了令人滿意的準確率,表示其適用於生理樣品中多巴胺的分析。

    Dopamine (DA) is an important neurotransmitter in human body. It has an great effect on Parkinson's disease and Alzheimer's disease. In this study, we fabricated the electrochemical biosensor of screen-printed carbon electrode (SPCE) modified with tyrosinase, chitosan and redox graphene oxide (rGO) and the sensor was used for the detection of DA without the interference from ascorbic acid or uric acid. We demonstrated the high sensitivity and selectivity of the electrochemical sensors with detection limit of 22 nM, and broad linear ranges of 0.4-8 μM and 40-500 μM by cyclic voltammetry. In addition, the proposed electrode exhibited a satisfactory recovery rate when it applied to healthy human urine samples, indicating that it is suitable for the analysis of DA in physiological samples.

    誌謝 I 中文摘要 II ABSTRACT III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1 生物感測器 1 1-1-1 生物感測器介紹 1 1-1-2 電化學生物感測器 2 2 兒茶酚胺類神經傳遞物質 3 3 電化學 5 1-3-1 循環伏安法3 (cyclic voltammetry,CV) 6 1-3-2 三電極系統 8 1-3-3 工作電極 8 1-3-4 電化學沉積電極 9 1-3-5 網印印刷電極 (screen‐printed electrode,SPE) 9 4 網印印刷電極的修飾 11 1-4-1 金屬的修飾 11 1-4-2 電子傳遞媒介質的修飾 11 1-4-3 選擇性薄膜的修飾 13 1-4-4 電化學前處理法 14 1-4-5 氧化還原石墨烯 (reduced graphene oxide,rGO ) 修飾 15 1-4-6 殼聚醣修飾電極 17 5. 酵素的修飾 18 1-5-1 吸附 (adsorption) 修飾 19 1-5-2 共價鍵 (covalent bond) 修飾 19 1-5-3 化學交聯法 (chemical cross-linking) 21 1-5-4 基質包埋法 (entrapment) 22 6. 酪胺酸酶 (tyrosinase) 23 7. 多巴胺電化學生物感測器文獻回顧 24 8. 研究動機 26 第二章 實驗器材與方法 27 2-1實驗器材 27 2-2 實驗藥品 28 2-3 實驗設計 29 2-4 實驗方法 30 2-4-1 rGO 溶液配製 30 2-4-2 rGO 與 chitosan 溶液配製 30 2-4-3 玻璃基材的清洗及OTS修飾 30 2-4-4 chitosan/rGO 溶液與碳膠電極組裝 30 2-4-5 酵素的配製 31 2-4-6 固定酵素 31 2-4-7 在相同溶液下不同電極的電化學行為 31 2-4-8 pH 值的優化 32 2-4-9 生物電極的電化學活性對多巴胺的感測 32 2-4-10 不同掃描速率下的電化學反應 32 2-4-11 干擾物測試 32 2-4-12 穩定性測試 33 2-4-13 真實樣品的感測 33 第三章 實驗結果與討論 34 3-1 利用網印技術修飾玻璃基材表面 34 3-2 利用化學鍵結修飾tyrosinase/chitosan/rGO於SPCE 表面 34 3-2-1 掃描式電子顯微鏡(SEM)的觀測結果 35 3-2-2 衰減全反射傅利葉轉換紅外線光譜儀 (ATR-FTIR) 的鑑定 37 3-2-3 水接觸角觀察電極表面親疏水性 40 3-3 標準氧化還原系統下的循環伏安法圖 41 3-4 循環伏安法偵測多巴胺 42 3-4-1 四種電極系統對多巴胺電流感測值 42 3-4-2 生物複合材料電極對酸鹼值的影響 43 3-4-3 生物複合材料電極對多巴胺的感測 44 3-4-4 掃描速率與生物複合材料電極對多巴胺的變化 46 3-5 生物複合材料電極的選擇性與穩定性 47 3-5-1 選擇性 47 3-5-2 穩定性 49 3-6 生物複合材料電極對真實樣品的測量 50 3-7 與先前研究文獻之多巴胺電化學感測器比較 51 第四章 總結 52 參考資料 53

    1. Mehrotra, P., Biosensors and their applications - A review. Journal of Oral Biology and Craniofacial Research 2016, 6, 153-9.
    2. Ali, J.; Najeeb, J.; Asim Ali, M.; Farhan Aslam, M.; Raza, A., Biosensors: Their Fundamentals, Designs, Types and Most Recent Impactful Applications: A Review. Journal of Biosensors & Bioelectronics 2017, 08, 1-9.
    3. J. Wang, Analytical Electrochemistry, 2nd Edition.
    4. Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L., A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education 2018, 95, 197-206.
    5. Du, J.; Yue, R.; Ren, F.; Yao, Z.; Jiang, F.; Yang, P.; Du, Y., Simultaneous determination of uric acid and dopamine using a carbon fiber electrode modified by layer-by-layer assembly of graphene and gold nanoparticles. gold bulletin 2013, 46, 137-144.
    6. Khaled, E.; Mohamed, G. G.; Awad, T., Disposal screen-printed carbon paste electrodes for the potentiometric titration of surfactants. Sensors and Actuators B: Chemical 2008, 135, 74-80.
    7. Stephen A. Wring, J. P. H., Chemically Modified, Screen-printed Carbon Electrodes. ANALYST 1992, 117, 1281-1286 .
    8. D.R.Matthews, E. B., A.Watson, R.R.Holman, J.Steemson, S.Hughes, D.Scott, PEN-SIZED DIGITAL 30-SECOND BLOOD GLUCOSE METER. THE LANCET 1987, 329, 778-779.
    9. Adams, R. N., Carbon Paste Electrodes. Analytical Chemistry 1958, 30, 1576-1576.
    10. Lin, C.; Compton, R. G., Size Effects in Nanoparticle Catalysis at Nanoparticle Modified Electrodes: The Interplay of Diffusion and Chemical Reactions. The Journal of Physical Chemistry C 2017, 121, 2521-2528.
    11. Davis, D.; Guo, X.; Musavi, L.; Lin, C.-S.; Chen, S.-H.; Wu, V. C. H., Gold Nanoparticle-Modified Carbon Electrode Biosensor for the Detection ofListeria monocytogenes. Industrial Biotechnology 2013, 9, 31-36.
    12. Ruan, C.; Shi, W.; Jiang, H.; Sun, Y.; Liu, X.; Zhang, X.; Sun, Z.; Dai, L.; Ge, D., One-pot preparation of glucose biosensor based on polydopamine–graphene composite film modified enzyme electrode. Sensors and Actuators B: Chemical 2013, 177, 826-832.
    13. Kim, Y. R.; Bong, S.; Kang, Y. J.; Yang, Y.; Mahajan, R. K.; Kim, J. S.; Kim, H., Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosensors and Bioelectronics 2010, 25, 2366-9.
    14. Wu, L.; Feng, L.; Ren, J.; Qu, X., Electrochemical detection of dopamine using porphyrin-functionalized graphene. Biosensors and Bioelectronics 2012, 34, 57-62.
    15. Wring, S. A.; Hart, J. P., Chemically modified, carbon-based electrodes and their application as electrochemical sensors for the analysis of biologically important compounds. A review. Analyst 1992, 117, 1215-1229.
    16. Wessells, C. D.; Peddada, S. V.; Huggins, R. A.; Cui, Y., Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries. Nano Letters 2011, 11, 5421-5425.
    17. Brett, C. M. A.; Inzelt, G.; Kertesz, V., Poly(methylene blue) modified electrode sensor for haemoglobin. Analytica Chimica Acta 1999, 385, 119-123.
    18. Haghighi, B.; Varma, S.; Alizadeh Sh, F. M.; Yigzaw, Y.; Gorton, L., Prussian blue modified glassy carbon electrodes—study on operational stability and its application as a sucrose biosensor. Talanta 2004, 64, 3-12.
    19. Eremenko, A.; Makower, A.; Jin, W.; Rüger, P.; Scheller, F., Biosensor based on an enzyme modified electrode for highly-sensitive measurement of polyphenols. Biosensors and Bioelectronics 1995, 10, 717-722.
    20. Guo, Z.; Dong, S., Electrogenerated Chemiluminescence from Ru(Bpy)32+ Ion-Exchanged in Carbon Nanotube/Perfluorosulfonated Ionomer Composite Films. Analytical Chemistry 2004, 76, 2683-2688.
    21. Huang, F.; Jin, Y.; Wen, L.; Wan, Z., Nafion Modification of Thermal-Oxidized IrOx Electrode. Journal of The Electrochemical Society 2018, 165, B12-B21.
    22. Belanger, D.; Pinson, J., Electrografting: a powerful method for surface modification. Chemical Society Reviews 2011, 40, 3995-4048.
    23. Zheng, X.; Chen, G.; Zhang, Z.; Beem, J.; Massey, S.; Huang, J., A two-step process for surface modification of poly(ethylene terephthalate) fabrics by Ar/O2 plasma-induced facile polymerization at ambient conditions. Surface and Coatings Technology 2013, 226, 123-129.
    24. Ye, Z.; Li, Y.; Wen, J.; Li, K.; Ye, B., Study of the voltammetric behavior of jatrorrhizine and its sensitive determination at electrochemical pretreatment glassy carbon electrode. Talanta 2014, 126, 38-45.
    25. Wang, F.-M.; Kuo, Y.-L.; Huang, L.-S.; Ramar, A.; Su, C.-H., Fabrication of in operando, self-growing, core-shell solid electrolyte interphase on LiFePO4 electrodes for preventing undesirable high-temperature effects in Li-ion batteries. Electrochimica Acta 2018, 268, 260-267.
    26. Rochefort, A.; Wuest, J. D., Interaction of Substituted Aromatic Compounds with Graphene. Langmuir 2009, 25, 210-215.
    27. Xuan Thinh, P.; Basavaraja, C.; Il Kim, K.; Huh, D. S., Fabrication and characterization of honeycomb-patterned film from poly(ɛ-caprolactone)/poly((R)-3-hydroxybutyric acid)/reduced graphene oxide composite. Polymer Journal 2013, 45, 1064-1071.
    28. Abdolhosseinzadeh, S.; Asgharzadeh, H.; Seop Kim, H., Fast and fully-scalable synthesis of reduced graphene oxide. Scientific Reports 2015, 5, 1-7.
    29. Guex, L. G.; Sacchi, B.; Peuvot, K. F.; Andersson, R. L.; Pourrahimi, A. M.; Strom, V.; Farris, S.; Olsson, R. T., Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale 2017, 9, 9562-9571.
    30. Lin, D.; Liu, Y.; Liang, Z.; Lee, H.-W.; Sun, J.; Wang, H.; Yan, K.; Xie, J.; Cui, Y., Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nature Nanotechnology 2016, 11, 626-632.
    31. Wang, J.; Yang, B.; Zhong, J.; Yan, B.; Zhang, K.; Zhai, C.; Shiraishi, Y.; Du, Y.; Yang, P., Dopamine and uric acid electrochemical sensor based on a glassy carbon electrode modified with cubic Pd and reduced graphene oxide nanocomposite. Journal of Colloid and Interface Science 2017, 497, 172-180.
    32. Piccinini, E.; Bliem, C.; Reiner-Rozman, C.; Battaglini, F.; Azzaroni, O.; Knoll, W., Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications. Biosensors and Bioelectronics 2017, 92, 661-667.
    33. Ensafi, A. A.; Jafari–Asl, M.; Rezaei, B., A novel enzyme-free amperometric sensor for hydrogen peroxide based on Nafion/exfoliated graphene oxide–Co3O4 nanocomposite. Talanta 2013, 103, 322-329.
    34. Ibáñez-Redín, G.; Wilson, D.; Gonçalves, D.; Oliveira, O. N., Low-cost screen-printed electrodes based on electrochemically reduced graphene oxide-carbon black nanocomposites for dopamine, epinephrine and paracetamol detection. Journal of Colloid and Interface Science 2018, 515, 101-108.
    35. Kumar, D. R.; Kesavan, S.; Nguyen, T. T.; Hwang, J.; Lamiel, C.; Shim, J.-J., Polydopamine@electrochemically reduced graphene oxide-modified electrode for electrochemical detection of free-chlorine. Sensors and Actuators B: Chemical 2017, 240, 818-828.
    36. Chai, L.; Qu, Q.; Zhang, L.; Shen, M.; Zhang, L.; Zheng, H., Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries. Electrochimica Acta 2013, 105, 378-383.
    37. Shao-Feng Wang, L. S., Wei-De Zhang, and Yue-Jin Tong, Preparation and Mechanical Properties of Chitosan-Carbon Nanotubes Composites. Biomacromolecules 2005, 6, 3067-3072
    38. Han, D.; Han, T.; Shan, C.; Ivaska, A.; Niu, L., Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid with Chitosan‐Graphene Modified Electrode. Electroanalysis 2010, 22, 2001-2008.
    39. Jawaheer, S.; White, S. F.; Rughooputh, S. D. D. V.; Cullen, D. C., Development of a common biosensor format for an enzyme based biosensor array to monitor fruit quality. Biosensors and Bioelectronics 2003, 18, 1429-1437.
    40. Wu, L.-Q.; Lee, K.; Wang, X.; English, D. S.; Losert, W.; Payne, G. F., Chitosan-Mediated and Spatially Selective Electrodeposition of Nanoscale Particles. Langmuir 2005, 21, 3641-3646.
    41. Zeng, X.; Li, X.; Xing, L.; Liu, X.; Luo, S.; Wei, W.; Kong, B.; Li, Y., Electrodeposition of chitosan–ionic liquid–glucose oxidase biocomposite onto nano-gold electrode for amperometric glucose sensing. Biosensors and Bioelectronics 2009, 24, 2898-2903.
    42. Yang, S.; Liu, X.; Zeng, X.; Xia, B.; Gu, J.; Luo, S.; Mai, N.; Wei, W., Fabrication of nano-copper/carbon nanotubes/chitosan film by one-step electrodeposition and its sensitive determination of nitrite. Sensors and Actuators B: Chemical 2010, 145, 762-768.
    43. Ahsan, S. M.; Thomas, M.; Reddy, K. K.; Sooraparaju, S. G.; Asthana, A.; Bhatnagar, I., Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 2018, 110, 97-109.
    44. Jian, J. M.; Liu, Y. Y.; Zhang, Y. L.; Guo, X. S.; Cai, Q., Fast and sensitive detection of Pb2+ in foods using disposable screen-printed electrode modified by reduced graphene oxide. Sensors (Basel) 2013, 13, 13063-75.
    45. Kamil Reza, K.; Azahar Ali, M.; Singh, M. K.; Agrawal, V. V.; Biradar, A. M., Amperometric enzymatic determination of bisphenol A using an ITO electrode modified with reduced graphene oxide and Mn3O4 nanoparticles in a chitosan matrix. Microchim. Acta 2017, 184, 1809-1816.
    46. Dinshaw, I. J.; Muniandy, S.; Teh, S. J.; Ibrahim, F.; Leo, B. F.; Thong, K. L., Development of an aptasensor using reduced graphene oxide chitosan complex to detect Salmonella. Journal of Electroanalytical Chemistry 2017, 806, 88-96.
    47. Boujakhrout, A.; Jimenez-Falcao, S.; Martinez-Ruiz, P.; Sanchez, A.; Diez, P.; Pingarron, J. M.; Villalonga, R., Novel reduced graphene oxide-glycol chitosan nanohybrid for the assembly of an amperometric enzyme biosensor for phenols. Analyst 2016, 141, 4162-9.
    48. Krajewska, B., Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology 2004, 35, 126-139.
    49. Choi, M. M. F., Progress in Enzyme-Based Biosensors Using Optical Transducers. Microchimica Acta 2004, 148, 107-132.
    50. Sassolas, A.; Blum, L. J.; Leca-Bouvier, B. D., Immobilization strategies to develop enzymatic biosensors. Biotechnology Advances 2012, 30, 489-511.
    51. Quiocho, F. A.; Richards, F. M., The Enzymic Behavior of Carboxypeptidase-A in the Solid State*. Biochemistry 1966, 5, 4062-4076.
    52. Weetall, H. H., Immobilized Enzymes: Analytical Applications. Analytical Chemistry 1974, 46, 602A-615A.
    53. Choi, H. N.; Kim, M. A.; Lee, W.-Y., Amperometric glucose biosensor based on sol–gel-derived metal oxide/Nafion composite films. Analytica Chimica Acta 2005, 537, 179-187.
    54. Wang, G.; Xu, J.-J.; Ye, L.-H.; Zhu, J.-J.; Chen, H.-Y., Highly sensitive sensors based on the immobilization of tyrosinase in chitosan. Bioelectrochemistry 2002, 57, 33-38.
    55. Hasegawa, T., Tyrosinase-Expressing Neuronal Cell Line as in Vitro Model of Parkinson’s Disease. International Journal of Molecular Sciences 2010, 11, 1082.
    56. O’Neill, R. D., Microvoltammetric techniques and sensors for monitoring neurochemical dynamics in vivo. A review. Analyst 1994 119, 767-779.
    57. Khudaish, E. A.; Al-Nofli, F.; Rather, J. A.; Al-Hinaai, M.; Laxman, K.; Kyaw, H. H.; Al-Harthy, S., Sensitive and selective dopamine sensor based on novel conjugated polymer decorated with gold nanoparticles. Journal of Electroanalytical Chemistry 2016, 761, 80-88.
    58. Castilho, T. J.; Sotomayor, M. d. P. T.; Kubota, L. T., Amperometric biosensor based on horseradish peroxidase for biogenic amine determinations in biological samples. Journal of Pharmaceutical and Biomedical Analysis 2005, 37, 785-791.
    59. Dursun, Z.; Gelmez, B., Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid at Pt Nanoparticles Decorated Multiwall Carbon Nanotubes Modified GCE. Electroanalysis 2010, 22, 1106-1114.
    60. Yang, C.-H.; Chen, C.-W.; Lin, Y.-K.; Yeh, Y.-C.; Hsu, C.-C.; Fan, Y.-J.; Yu, I.-S.; Chen, J.-Z., Atmospheric-Pressure Plasma Jet processed carbon-based electrochemical sensor Integrated with a 3D-printed microfluidic channel. J. Journal of The Electrochemical Society 2017, 164, B534-B541.
    61. Reza, K. K.; Ali, M. A.; Srivastava, S.; Agrawal, V. V.; Biradar, A. M., Tyrosinase conjugated reduced graphene oxide based biointerface for bisphenol A sensor. Biosensors and Bioelectronics 2015, 74, 644-51.
    62. Wang, Y.; Li, Y.; Tang, L.; Lu, J.; Li, J., Application of graphene-modified electrode for selective detection of dopamine. Electrochemistry Communications 2009, 11, 889-892.
    63. Tan, L.; Zhou, K.-G.; Zhang, Y.-H.; Wang, H.-X.; Wang, X.-D.; Guo, Y.-F.; Zhang, H.-L., Nanomolar detection of dopamine in the presence of ascorbic acid at β-cyclodextrin/graphene nanocomposite platform. Electrochemistry Communications 2010, 12, 557-560.
    64. Tian, X.; Cheng, C.; Yuan, H.; Du, J.; Xiao, D.; Xie, S.; Choi, M. M., Simultaneous determination of L-ascorbic acid, dopamine and uric acid with gold nanoparticles-beta-cyclodextrin-graphene-modified electrode by square wave voltammetry. Talanta 2012, 93, 79-85.
    65. John Njagi, M. M. C., J. C. Leiter, Silvana Andreescu, Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. Analytical Chemistry. 2010, 82, 989-996.
    66. Ferapontova, E. E., Electrochemical Analysis of Dopamine: Perspectives of Specific In Vivo Detection. Electrochimica Acta 2017, 245, 664-671.

    下載圖示
    QR CODE