簡易檢索 / 詳目顯示

研究生: 劉岳函
論文名稱: 以高真空壓鑄法製備陣列式氧化鋅-鋁奈米線及氣體感測特性之研究
The Study on Manufacture of Array Nanowires of Zinc oxide - Aluminum by High Vaccum Die-Casting and Property of Gas Sensin
指導教授: 李景峰
Li, Jeen-Fong
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 78
中文關鍵詞: 鋅鋁合金陽極氧化鋁真空壓鑄金屬半導體氣體感測元件氧化鋅
英文關鍵詞: Zinc-Aluminum alloy, AAO, Vacuum die-casting, Metal semiconductor gas sensor, zinc oxide
論文種類: 學術論文
相關次數: 點閱:196下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋅在氣體偵測器應用方面為一種極為普遍使用的材料,因為其在還原性氣氛中會與氧化物表面吸附的氧氣反應造成電阻的改變。並可偵測或辨別多種有毒氣體及可燃燒性的氣體,如一氧化碳、乙醇、丙烷等等。本研究首先利用高真空壓鑄方式將亞共晶、共晶與過共晶相熔融的鋅鋁合金金屬溶液鑄入陽極氧化鋁(Anodic Aluminum Oxide, AAO)奈米模板中,待金屬液冷卻固化後,可得到陣列式鋅鋁合金奈米線,經熱處理後可得陣列式氧化鋅鋁奈米線,以濕蝕刻方式將AAO奈米模板移除使奈米線裸露,最後於上方蒸鍍銅薄膜完成金屬半導體氣體感測元件製作。而元件之成份、微結構及性質檢測則以能量散佈光譜儀(Energy Dispersive Spectrometer , EDS)、掃瞄式電子顯微鏡(Scanning Electron Microscopy , SEM)、X光繞射分析儀(X-ray Diffractometer , XRD)與示差掃描熱量分析儀(Differential Scanning Calormetry , DSC)做分析。本文之目的在研究以氧化鋅陣列式奈米線感測器元件作為對照組,而添加各比例鋁之氧化鋅陣列式奈米線感測元件作為設計組,將兩組元件置於相同檢測條件中,比較其對氧氣響應之靈敏度。而氣體檢測部分則是自行設計之量測平台,藉由質量流量控制器( Mass Flow Controler, MFC)控制待測氣體濃度,進行微訊號量測與訊號數據擷取,於溫度100℃、150℃、200℃,分別通入5%、10%、15%、20% 體積百分濃度的O2。結果顯示,提高溫度有助於靈敏度的提升;具有奈米線陣列之感測元件靈敏度排列順序ZnO 95%-Al 5%>ZnO 98%-Al 2%>ZnO 100%>ZnO 90%-Al 10%,因此靈敏度會隨鋁的含量增多而提升,但若添加超過5%,其靈敏度會隨鋁的含量增多而下降。

    目 錄 中文摘要 I 英文摘要 II 誌 謝 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 感測器簡介 3 1.2.1 氣體感測器性能要素 4 1.2.2 吸附原理 6 1.3 研究動機及目的 10 1.4 研究流程及論文架構 12 第二章 文獻回顧 14 2.1 陽極氧化鋁文獻回顧 14 2.1.1 陣列式陽極氧化鋁簡介 14 2.1.2 陣列式陽極氧化鋁的生成機制 16 2.1.3 影響陽極氧化鋁的參數 19 2.2 氧化鋅文獻回顧 22 2.2.1 氧化鋅基本物理性質 22 2.2.2 氧化鋅與氧化鋅摻雜金屬之電性 24 2.3 氣體感測器文獻回顧 25 2.3.1 金屬半導體氣體感測器 26 2.3.2 電化學氣體感測器 27 2.3.3 固態電解質氣體感測器 29 2.3.4 觸媒燃燒式氣體感測器 30 2.3.5 光電式氣體感測器 31 2.3.6場效電晶體氣體感測器 32 2.3.7 壓電型氣體感測器 33 第三章 陣列式鋅鋁合金奈米線氣體感測元件設計與製作 35 3.1 陣列式陽極氧化鋁奈米模板製作 36 3.1.1 實驗方法與流程 36 3.1.2 電解拋光 36 3.1.3 一次陽極化處理 38 3.1.4 鉻酸蝕刻 39 3.1.5 二次陽極化處理 39 3.1.6 去背蝕刻與薄膜通孔 40 3.2 鋅鋁合金真空熔煉 42 3.2.1 實驗方法及流程 42 3.3 以真空壓鑄法製備陣列式鋅鋁合金奈米線 47 3.3.1 實驗方法及流程 48 第四章 實驗結果與討論 50 4.1 陽極氧化鋁奈米模板探討 50 4.2 合金檢測與成份分析 51 4.2.1 EDS成份分析 51 4.2.2 XRD性質檢測 52 4.2.3 DSC性質檢測 54 4.3 鋅鋁合金奈米線微結構檢測 57 4.4 氧氣氣體檢測系統 58 4.5 氣體檢測 59 4.5.1 實驗程序 59 4.5.2 氧氣氣體檢測 59 4.5.2.1 各比例ZnO 100℃訊號量測 60 4.5.2.2 各比例ZnO 150℃訊號量測 64 4.5.2.3 各比例ZnO 200℃訊號量測 67 第五章 結論與未來展望 70 5.1 結論 70 5.2 未來展望 71 參考文獻 72

    王偉育(2009)。生物氧氣即時感測器之製作(未出版之碩士論文)。國立中正大學機械工程學系,嘉義,。
    方昱超(2005)。金屬摻雜對SDC導氧材料的影響及其在氧氣感測器中應用的研究(未出版之碩士論文)。國立台灣科技大學化學工程系,台北,。
    T. G. Nenov and S. P. Yordanov(1996),Ceramic Sensors technology and applications, Pennsylvania, Technomic Publishing Company, Inc.
    P. B. Weisz(1953), Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis, The Journal of Chemical Physics, 21( 9), 1531-1538.
    T. Seiyama, A. Kato, K. Fujiishi and M. Nagatani(1962), A new detector for gaseous components using semiconducting thin films, Analytical chemistry, 34, 1502-1503.
    P. J. Shaver(1967), Activated tungsten oxide gas detectors, Applied Physics Letters, 11, 255-257.
    D. Rosenfeld, R. Sanjines, W. H. Schreiner and F. Levy(1993), Gas sensitive and selective SnO2 thin polycrystalline films doped by ion implan-tation, Sensors and Actuators B, 15, 406-409.
    H. M. Lin, T. Y. Hsu, C. Y. Tung and C. M. Hsu(1995), Hydrogen sulfide detection by nanocrystal Pt doped TiO2 base gas sensors”, Nanostructured Materials, 6( 5-8), 1001-1004.
    J. Frank, M. Fleischer and H. Meixner(1995), Electrical doping of gas-sensitive, semiconducting Ga2O3 thin films, Sensors and Actuators B: Chemical, 34, 373-377.
    李俊遠,氣體感測器介紹”,工業材料,第124 期,pp.82-84(1997)
    葉陶淵,化學感測器中氣體感測器的新動向”,科儀新知,第20卷第4 期,pp.72-76(1999)
    D.S. Vlachos and A.C. Xenoulis(1998),”Gas detection selectivity and cluster size, Nanostructured Materials, 10(8), 1355-1361.
    S. Major, A.Banerjee and K.L.Chopra(1986),Thickness-dependent properties of Indium-doped ZnO films, Thin Solid Films, 143, 19-30.
    G.S.V. Coles and G.Williams(1991), Selectivity studies on tin oxide-based semiconductor gas sensors, Sensors and Actuators B. 3, 7-14.
    鄭煜騰、鄭耀宗(1997),氣體感測器的市場分析與發展概況,科儀新知,18(5),76-84。
    T. Miyata,T. Minami,K. Shimokawa,T. Kakumu and M. Ishii(1997), New materials consisting of multicomponent oxides for thin-film gas sensors,Journal of the Electrochem.Society, 144(7),2432-2436.
    A. Galdikas,Z. Martunas and A. Setkus(1992),SnInO-based chlorine gas sensor, Sensors and actuators B, 7,633-636.
    G. Sberveglieri,S. Groppelli, P. Nelli, A. Tintinelli, G. Giunta(1995).A novel method for the proparation of NH3 sensors based on ZnO-In thin films,Sensors and Actuators B, 25, 588-590.
    D. H. Yoon, J. H. Yu and G. M. Choi(1998),CO gas sensing properties of Zn-CuO composite, Sensors and Actuators B: Chemical ,46, 15-23.
    N. T. Nguyen(1997), Micromachined Flow Sensors-A Review, Flow Measurement and Instrumentation, 8(7), 7-16.
    M. M. O. Lee(1997,March), Merged Technology on MEMS, Proceedings of the IEEEE Hong Kong Electron Device Meeting, IEEE Piscataway, NJ: USA.
    楊哲明(2003)。共晶組成錫基合金之電衝擊破壞特性研究(未出版之碩士論文)。國立成功大學材料科學及工程學系,台南。
    鄒秉環(2007)。與CMOS製程相容之奈米碳管微機電氣體感測器(未出版之碩士論文)。國立台北科技大學製造科技研究所,台北。
    P. Ciureanu(1992),Thin Film Resistive Sensors,Institute of Physics Publishing, New York,NY.
    D. M. Liu, J. A. Hernandez, K. P. Kamloth and H. D. Liess(1997), A new carbon monoxide sensor using using polypyrrole film grow on an interdigital-capacitor substrate,Sensors and Actuators B,41,203-206.
    J.E. Lennard-Jones(1932), Processes of adsorption and diffusion on solid surfaces. 333-359.
    S.J. Gentry and T.A.Jones(1986), The role of catalysis in solid-state gas sensors, Sensors and Actuators,10,141-163.
    缺氧作業危害及事例介紹。行政院勞工委員會勞工安全衛生研究所。取自: http://www.safetygas.com.tw/pdf/%E7%BC%BA%E6%B0%A7%E4%BD%9C%E6%A5%AD%E5%8D%B1%E5%AE%B3%E5%8F%8A%E4%BA%8B%E6%95%85%E4%BB%8B%E7%B4%B9.pdf.
    H.Masuda, M.Satoh, (1996). Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask,Japanese Journal of Applied Physics, 35, 126-129.
    A. P .Li,; F.Müller, A.Birner,; K. Nielsch, U. J.Gösele (1998), Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. Journal of Applied Physics, 84(11),61-68.
    T. T. Xu, R. D. Piner, and R. S. Ruoff, An Improved Method To Strip Aluminum from Porous Anodic Alumina Films, Langmuir, 19 (2003) 1443-1445.
    G.Che, B. B.Lakshmi, C. R.Martin, E. R. Fisher(1998), Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method, Chem. Mater. 10, 260.
    J. Li, C. Papadopoulos, M. Moskovits, J.M. Xu(1999), Large-Area Hexagonally Ordered Arrays of Carbon Nanotubes, Appl. Phys. Lett., 75(3), 367.
    Y. Kanamori, K. Hane, H. Sai, and H. Yugami(2001), 100 nm period silicon antireflection structures fabricatged using a porous alumina membrane mask, Appl. Phys. Lett., 78(2), 142–143.
    S. Shingubara, O. Okino, Y. Sayama, H. Sakaue and T. Takahagi(1997), Ordered Two-Dimensional Nanowire Array Formation Using Self-Organized Nanoholes of Anodically Oxidized Aluminum, Jpn. J. Appl. Phys. 36, 7791.
    J. Y.Liang, H.Chik, A. J.Yin, J. J. Xu(2002), Nonlithographic Fabrication of Lateral Superlatticesfor Nanometric Electromagnetic-Optic Applications, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 8(5), 2544.
    楊昆霖(2007)。大面積規則陽極氧化鋁孔洞之研製與相關運用(未出版之碩士論文)。國立中山大學光電研究所,高雄。
    H.Masuda, & k. Fukuda(1995), Ordered metal nanohole array made by a two-step replication of honeycomb structures of anodic alumina,”Science 268, 1466-1468.
    O. Jessensky, F.Mu ̈ller, U. Go ̈sele(1998), Self Organized Formation of Hexagonal Pore Arrays in Anodic Alumina, Appl. Phy, Lett. 72,1173,.
    L. Li, Y.Zhang, Y. W. Yang,; X. H.Huang, G. H. Li, L. D. Zhang(2005), Diameter-depended thermal expansion properties of Bi nanowire arrays, Appl. Phys. Lett., 87(3), 031912-031912-3.
    Y. C. Kong, D. P.Yu(2001), Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach, Phys. Lett., 78(4), 407-409.
    L.F. Adam and M.Latika (2007), Optimal Parameters for Synthesis of Magnetic Nanowires in Porous Alumina Templates Electrodeposition Study,Journal of The Electrochemical Society, 154(4).
    X. H. Bao, F. Y. Li, R. M. Metzger, J. (1996), Synthesis and magnetic properties of electrodeposited metal particles on anodic alumite film Appl. Phys., 79(8), 4866.
    G. E. Thompson(1997), Porous anodic alumina: fabrication, characterization and applications,Journal of Thin Solid Films., 297, 192-201.
    C. Y. Liu, A. Datta, N. W. Liu, C. Y. Peng, and Y. L. Wang(2004), Order–disorder transition of anodic alumina nanochannel arrays grown under the guidance of focused-ion-beam patterning, Appl. Phys. Lett., 84, 2509.
    C. Y. Liu, A. Datta, and Y. L. Wang(2001) , Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces, Appl. Phys. Lett., 78, 120.
    H.Masuda, H.Yamada, M.Saitoh, H.Asoh, M.Nakao, Y.Tamamura(1997), Highly ordered nanochannel-array architecture in anodic alumina, Appl. Phys. Lett., 71, 2770.
    F.Li, L.Zhang, R. M. Metzger(1998), On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide, Chemical of Materials, 10, 2470.
    A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele(1998), Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina, Appl. Phys., 84, 6023.
    K.Nielsch, J.Choi, K.Schwirn, R. B.Wehrspohn, U.Gösele(2002), Self-ordering Regimes of Porous Alumina:Â The 10 Porosity Rule, Nano Lett., 2(7), 677.
    L.Ba, W. S.Li(2000), Influence of anodizing conditions on the ordered pore formation in anodic alumina Journal of Physics D: Applied Physics, 33, 2527.
    J. I. Pankove(1975). Optical Progress in Semiconductors . New York : Dover.
    D. Bao, H. Gu, A. Kuang(1998), Sol-gel-derived c-axis oriented ZnO thin films,Thin solid films, 312, 37-39.
    D. G. Baik, S. M. Cho (1999), Application of sol-gel derived films for ZnO/n-Si junction solar cells, Thin Solid Films, 354, 227-231.
    H.W. Ryua, B.S. Park(2003), ZnO sol–gel derived porous film for CO gas sensing, Sensors and Actuators B, 96, 717-722.
    J. Jagadish and S. J. Pearton(2006), Zinc Oxide Bulk, Thin Film and Nanostructures, Elsevier Inc.
    F. D. Paraguay, J. Morales, W. L. Estrada, E. Andrade, M. M. Yoshida(2000), Influence of Al, In, Cu, Fe and Sn dopants in the microstructure of zinc oxide thin films obtained by spray pyrolysis, Thin solid Films, 366(1) 16-27.
    R. Wang, L. H. King, and W. Sleight (1996), Highly conducting transparent thin films based on zinc oxide, Journal of Materials Research, 11(6), 1659-1664.
    H.Ko, W. P. Tai, Y.S. Kim(2005), Growth of Ai-doped ZnO thin films by pulsed DC magne tron sputtering, J. Cry. Grow., 277, 352.
    B.Chapman(1980), Glow Discharge Processes, chap.6. N.Y.John Wiley & Sons.Inc.
    T.Minami, H.Sato, K.Ohashi, T.Tomofuji and S.Takata(1992), Conduction mechanism of highly conductive and transparent zinc oxide thin films prepared by magnetron sputtering, J. Cry. Grow., 117. 370.
    K. Wasa and S. Hayakawa(1992), Handbook of Sputter Deposition Technology, NJ: Noyes Publications.
    C. Agashe, O. Kluth, J. Hupkes, U. Zastrow, B. Rech(2004), Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films , J. Appl.Phys. 95(4), 1911.
    S. P. Lee (1997, May),FET Humidity Sensors Based on Titanium Oxide Film. Properties and Applications of Dielectric Materials, 1997, Proceedings of the 5th International Conference, Seoul 2 , 1066–1069.
    D. L. Dreifus, R. J. Higgins,R. B. Henard, R. Almar, and L. P. Solie (1997), Experimental observation of high velocity pseudo-SAWs in ZnO/Diamond/Si multilayers, Proceedings of the 1997 IEEE International Ultrasonics Symposium, Toronto, 191-194.
    J. Koike, H. Tanaka, and H. Ieki (1995), Quasi-microwave band longitudinally coupled surface acoustic wave resonator filters using ZnO/Sapphire substrate, Japanese Journal of Applied Physics, 34, 2678-2682.
    N. Yamazoe, and Y. Shimizu Y (1986), Humidity sensors: principles and applications, Sensor. Actuat., 10, 379-398.
    X. L. Guo, J. H. Choi, H. Tabata, and T. Kawai (2001), Fabrication and optoelectronic properties of a transparent ZnO hemostructural light-emitting diode, Jpn. J. Appl. Phys, 40, L177-L179.
    S. Liang, H. Sheng, Y. Liu, Z. Hou, Y. Lu, and H. Shen (2000), ZnO schottky ultraviolet photo-detectors, J. Cryst. Growth, 225, 110-113.
    H. Kim, C. M. Gilmore, J. S. Horwitz, A. Pique, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey(2000), Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices, Appl. Phys. Lett., 76, 259-261.
    C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed(2005), Chemistry and properties of nanocrystals of different shapes, Chem. Rev., 105, 1025-1102.
    A. Ohtomo, M. Kawasaki, Y. Sakurai, I. Ohkubo, R. Shiroki, Y. Yoshida, T. Yasuda, Y. Segawa, and H. Koinuma(1998), Fabrication of alloys and superlattices based on ZnO towards ultraviolet laser, Mater. Sci. Eng., 56, 263-266.
    P. Hersch (1952),Galvanic determination of traces of oxygen in gases, Nature, 169, 792-793.
    P. B. Weise (1953),Effect of electronic charge transfer between adsorbate and solid on chemisorption and catalysis, The Journal of Chemical Physics, 21(2), 1531-1538.
    J. Weissbart and R. Ruka(1961),Oxygen gauge, Review of Scientific Instruments., 32(5), 593-595.
    T Seiyama, A Kato, K Fujiishi, M Nagatani (1962),A new detector for gaseous components using semiconductive thin films, Analytical Chemistry, 34(11), 1502-1503.
    I. Lundstrom, S. Shivaraman, C. Svensson and L. Lundkvist(1975),A hydrogen sensitive MOS field-effect transistor, Appl. Phys. Lett., 26(2), 55-57.
    蔡嬪嬪、曾明漢(1992),氣體感測器之簡介、應用及市場,材料與社會,68,50-56。
    J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho and H. Dei (1999),
    Nanotube molecular wire as chemical sensors”, Science., 287(5453), 622-625.
    Qi Qi, Tong Zhanga, Qingjiang Yu, Rui Wang, Yi Zenga, Li Liu, Haibin Yang (2003), Properties of humidity sensing ZnO nanorods-base sensor fabricated byscreen-printing,
    Sensors and Actuators B: Chemical, 133, 638-643.
    Sahar Hemmati,Azam Anaraki Firooz, , Abbas Ali Khodadadi , Yadollah Mortazavi (2011), Nanostructured SnO2–ZnO sensors: Highly sensitive and selective to ethanol, Sensors and Actuators B: Chemical, 160, 1298-1303.
    Ö. C¸ oban, S. Tekmen, S. Tüzemen (2013), Detection of oxygen with electrochemically deposited ZnO thin films, Sensors and Actuators B: Chemical, 186, 781-788.
    林鴻明(2001),超微粒半導體氣體感測材料之性質研究,工程科技通訊,59, 52-56。
    Hisao Ohmishi, Hirokazu Sasaki, Takeshi Marsumoto and Masmichi Ippommatsu , “Sensing mechanism of SnO2 thin gas sensor”, Sensors and Actuators B., vol. 14, no. 1-3, pp. 677-678, 1993.
    G. Sberveglieri(1992),Gas sensors, Kluwer Academic Publishers.
    莊睦賢、黃炳照 (1999),電化學感測器,化工技術,7(2)。
    P.T.Moseley, J.O.W Norris, D.E.Williams, (1990),Techniques and mechanisms in gas sensing, New York :Adam Hilger.
    周瑞福(2011),氣體感測器原理與應用,綠能與環境,77。
    林立德(1987),光纖概論,台北:全華科技圖書公司。
    廖得照、黃素貞(1995),光纖技術手冊,台北:全華科技圖書公司。
    H. N. Mcmurray(1992),Novel thin optical film sensors for the detection of carbon dioxide, J. Mater. Chem., 2(4) , 401-406.
    I. Lundstrom, S. Shivaraman, C. Svensson and L. Lundkvist(1975),A hydrogen sensitive MOS field-effect transistor, Appl. Phys. Lett., 26(2), 55-57.
    C. C. Lu, D. Setiadi, F. Udrea, W.I. Milne, J.A. Covington, J.W. Gardner(2000),3D thermo-electro-mechanical simulations of gas sensors based on SOI membranes, Proceeding of the 3rd International Conference on Modeling and Simulation of Microsystems (MSM 2000)., San Diego, USA.
    M.W. Chase, Jr., C.A .Davies, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald, and A.N. Syverud (1985), JANAF thermochemical tables, J. Phys. Chem. Ref. Data, 14(Suppl 1).
    I.Barin, (1885). Thermochemical Data of Pure Substances, VCH, Verlagsgesellshaft mbH, Weumheim.
    W. R.Osorio, C. M. Freire, A. Garcia (2005). The effect of the dendritic microstructure on the corrosion resistance of Zn–Al alloys. Journal of Alloys and Compounds, 397, 179–191.
    袁章福,柯家駿,李晶(2006),金屬及合金的表面張力,中國:科學出版社。
    郭金國、陳建仲、陳漢龍(2007,11月),壓鑄法製作合金奈米線,兩岸機電暨重要特色領域人才培育改進計劃學術研討會論文集,新竹:台灣。
    Y. H. ZHU, G. T. Villasenor, C. Pina (1994), Complex microstructural changes in as-cast eutectoid Zn-Al alloy, JOURNAL OF MATERIALS SCIENCE, 29, 1549-1552.

    下載圖示
    QR CODE