簡易檢索 / 詳目顯示

研究生: 朱財平
Chu, Tsai-Ping
論文名稱: 利用全天空影像分析進行日射量及太陽能發電量之估算與預測
All-Sky Image Analysis for Solar Irradiance and Solar Power Estimation and Prediction
指導教授: 呂藝光
Leu, Yih-Guang
口試委員: 曹昭陽 莊鎮嘉 鄭錦聰 陶金旺
口試日期: 2021/07/30
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 90
中文關鍵詞: 日射量太陽能發電量全天空影像光流法長短期記憶
英文關鍵詞: solar irradiance, solar power, all-sky image, optical flow, LSTM
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101168
論文種類: 學術論文
相關次數: 點閱:144下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 日射量容易受天氣因素影響而產生突坡事件,並造成太陽能發電量不穩定,以致難以將其整合入區域電網當中。本研究以全天空影像儀捕獲白晝之全天空影像,並建立一以影像特徵為基礎之日射量及太陽能發電量估算與預測系統。分析當前空影像以萃取全域及局部雲層之權重;利用光流法推算雲層移動狀態,並製作一分鐘之天空預測圖像。將雲層權重作為長短期記憶(LSTM)之輸入,以進行日射量估算與預測。並且,製作功率曲線,以進一步估算太陽能之發電量。本研究使用多個效能指標評估效果,包括平均絕對誤差(MAE)、均方根誤差(RMSE)、正歸化均方根誤差(nRMSE)以及判定係數(R^2);並設計數個實驗方法進行比較,實驗結果顯示,本研究所提出方法具有較佳的性能。

    The ramp event of solar irradiance is prone to occur due to atmospheric conditions, and makes it difficult to integrate solar power into regional power grid. In this study, all-sky images are captured by the all-sky imager. A system is established to perform solar irradiance and solar power estimation and prediction based on image features. The global and the region cloud weights are extracted by analyzing the images. The predicted images for the next minute are made after the cloud movements are derived by using the optical flow. The long short-term memory (LSTM) is used as a training model with cloud weights as inputs for the solar irradiance estimation and prediction. Furthermore, power curves are made to estimate the solar power output. Several performance indices are used to evaluate the performance, including MAE, RMSE, nRMSE and R^2. Several methods are compared, and the experimental results show that the performance of the proposed method is better.

    Acknowledgements i Abstract in Chinese ii Abstract in English iii Table of Contents iv List of Tables vii List of Figures x Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Purpose 3 1.3 Methods 3 1.4 Framework 3 Chapter 2 Literature Review 5 2.1 Cloud Feature Extraction 5 2.2 Cloud Motion Detection 6 2.3 Solar Irradiance Estimation and Prediction 7 Chapter 3 Basic Principles 11 3.1 The Sun Track Physical Model 11 3.2 Optical Flow Method 14 3.2.1 Optical Flow 14 3.2.2 Lucas-Kanade Optical Flow 15 3.2.3 Optical Field 17 3.3 Long Short-Term Memory 17 3.3.1 Recurrent Neural Networks 17 3.3.1.1 Forward propagation 18 3.3.1.2 Backward propagation 19 3.3.1.3 Vanishing/ Exploding gradient 20 3.3.2 Long Short-Term Memory 21 Chapter 4 Proposed Methods 24 4.1 System Structure 24 4.2 Image Feature Extraction Methods 25 4.2.1 The Sun Block Cropping 26 4.2.2 Regional Cloud Feature Extraction 28 4.2.2.1 The improved RB method 28 4.2.2.2 The sun area elimination 30 4.2.2.3 The distance consideration 30 4.2.2.4 The regional weights calculation 31 4.2.3 Global Cloud Feature Extraction 33 4.3 Predicted Sun Block Image Production 36 4.3.1 The Average Moving Vector Calculation 37 4.3.2 The Predicted Sun Block Image Production 39 Chapter 5 Experimental Results 45 5.1 Database 45 5.2 Performance Indices 46 5.3 Solar Irradiance Estimation 47 5.4 Solar Power Estimation 69 5.5 Solar Irradiance Prediction 72 Chapter 6 Conclusion and Future Works 83 6.1 Conclusion 83 6.2 Future Works 84 References 86 Autobiography 89 Academic Achievement 90

    [1] T. H. Hsiao, K. L. Huang and Y. J. Chang, “A model for forecasting of solar power annual electricity and its strategy application,” Journal of Taiwan Energy., vol. 4, no. 4, pp. 401-430, December 2017.
    [2] M. Q. Raza, M. Nadarajah and C. Ekanayake, “On recent advances in PV output power forecast,” Solar Energy., vol. 136, pp. 125-144, 2016.
    [3] S. Sobri, S. Koohi-Kamali and N. Abd. Rahim, “Solar photovoltaic generation forecasting methods: A review,” Energy Conversion and Management., vol. 156, pp. 459-497, 2018.
    [4] A. Al-lahham, O. Theeb, K. Elalem, et al., “Sky imager-based forecast of solar irradiance using machine learning,” Electronics (Switzerland)., vol. 9(10), pp. 1-14, 2020.
    [5] M. Khodayar, G. Liu, J. Wang and M. E. Khodayar, “Deep learning in power systems research: A review,” in CSEE Journal of Power and Energy Systems., vol. 7, no. 2, pp. 209-220, 2021.
    [6] A. Alzahrani, P. Shamsi, C. Dagli, et al., “Solar irradiance forecasting using deep neural networks,” Procedia Computer Science., vol. 114, pp. 304-313, 2017.
    [7] S. Dev, F. M. Savoy, Y. H. Lee, et al., “Estimating solar irradiance using sky imagers,” Atmos. Meas. Tech., vol. 12, pp. 5417–5429, 2019.
    [8] J. Alonso-Montesinos and F. J. Batlles, “The use of a sky camera for solar radiation estimation based on digital image processing,” Energy., vol. 90, Part 1, pp. 377-386, 2015.
    [9] S. Tiwari, R. Sabzehgar and M. Rasouli, “Short term solar irradiance forecast based on image processing and cloud motion detection,” in 2019 IEEE Texas Power and Energy Conference (TPEC)., pp. 1-6, 2019.
    [10] T. P. Chu, J. H. Jhou and Y. G. Leu, “Image-based solar irradiance forecasting using recurrent neural networks,”in 2020 International Conference on System Science and Engineering (ICSSE)., pp. 1-4, 2020.
    [11] F. Harrou, F. Kadri and Y. Sun, “Forecasting of photovoltaic solar power production using LSTM approach,” Intech Open., 2020.
    [12] S. Srivastava and S. Lessmann, “A comparative study of LSTM neural networks in forecasting day-ahead global horizontal irradiance with satellite data,” Solar Energy., vol. 162, pp. 232-247, 2018.
    [13] Z. El Jaouhari, Y. Zaz and L. Masmoudi, "Cloud tracking from whole-sky ground-based images," in 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC)., pp. 1-5, 2015.
    [14] M. Chang, Y. Yao, G. Li, Y. Tong, et al., "Cloud tracking for solar irradiance prediction," in 2017 IEEE International Conference on Image Processing (ICIP)., pp. 4387-4391, 2017.
    [15] S. Sun, E. Ritzhaupt-Kleissl and T. Chen, "Short term cloud coverage prediction using ground based all sky imager," in 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)., pp. 121-126, 2014.
    [16] A. Taravat, F. Del Frate, C. Cornaro and S. Vergari, "Neural networks and support vector machine algorithms for automatic cloud classification of whole-sky ground-based images," IEEE Geoscience and Remote Sensing Letters., vol. 12, no. 3, pp. 666-670, 2015.
    [17] L. Magnone, F. Sossan, E. Scolari and M. Paolone, “Cloud motion identification algorithms based on all-sky images to support solar irradiance forecast,” in 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC)., pp. 1415-1420, 2017.
    [18] Y. Ai, Y. Peng and W. Wei, “A Model of very short-term solar irradiance forecasting based on low-cost sky images,” in 2019 IEEE Texas Power and Energy Conference (TPEC)., 020022, pp. 1-5, 2017.
    [19] J. Alonso-Montesinos, F.J. Batlles and C. Portillo, “Solar irradiance forecasting at one-minute intervals for different sky conditions using sky camera images,” Energy Conversion and Management., vol. 105, pp. 1166-1177, 2015.
    [20] H. Yang, B. Kurtz, D. Nguyen, et al., “Solar irradiance forecasting using a ground-based sky imager developed at UC San Diego,” Solar Energy., vol. 103, pp. 502-524, 2014.
    [21] C. W. Chow, B. Urquhart, M. Lave, et al., “Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed,” Solar Energy., vol. 85, Issue 11, pp. 2881-2893, 2011.
    [22] K. Y. Bae, H. S. Jang and D. K. Sung, "Hourly solar irradiance prediction based on support vector machine and its error analysis," IEEE Transactions on Power Systems., vol. 32, no. 2, pp. 935-945, 2017.
    [23] A. Muhammad, J. M. Lee, S. W. Hong, et al., "Deep learning application in power system with a case study on solar irradiation forecasting," in 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)., pp. 275-279, 2019.
    [24] M. Khodayar, G. Liu, J. Wang and M. E. Khodayar, "Deep learning in power systems research: A review," CSEE Journal of Power and Energy Systems., 2020, vol. 7, no. 2, pp.209-220, 2021.
    [25] V. Bone, J. Pidgeon, M. Kearney, et al., “Intra-hour direct normal irradiance forecasting through adaptive clear-sky modelling and cloud tracking,” Solar Energy., vol. 159, pp. 852-867, 2018.
    [26] K. Daniel, M. Frank, B. Christian et al., “Short-term and regionalized photovoltaic power forecasting, enhanced by reference systems, on the example of Luxembourg,” Renewable Energy., vol. 132, pp. 455-470, 2018.
    [27] S. Srivastava, S. Lessmann, “A comparative study of LSTM neural networks in forecasting day-ahead global horizontal irradiance with satellite data,” Solar Energy., vol. 162, pp. 232-247, 2018.
    [28] S. Srivastava, S. Lessmann, “A comparative study of LSTM neural networks in forecasting day-ahead global horizontal irradiance with satellite data,” Solar Energy., vol. 162, pp. 232-247, 2018.
    [29] L. Bruce and K. Takeo, “An iterative image registration technique with an application to stereo vision,” in Proceedings of Imaging Understanding Workshop., pp. 121-130, 1981.
    [30] A. K. Shrestha, A. Thapa, H. Gautam, "Solar radiation, air temperature, relative humidity, and dew point study: Damak, Jhapa, Nepal", International Journal of Photoenergy., vol. 2019, pp. 1-7, 2019.

    下載圖示
    QR CODE