簡易檢索 / 詳目顯示

研究生: 婁德
Lou, Te
論文名稱: 應用於音頻之二階三角積分調變器的設計與實現
Design and Implementation of a Second-Order Delta-Sigma Modulator for Audio Application
指導教授: 郭建宏
Kuo, Chien-Hung
口試委員: 黃育賢
Hwang, Yuh-Shyan
陳建中
Chen, Jiann-John
郭建宏
Kuo, Chien-Hung
口試日期: 2022/01/20
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 85
中文關鍵詞: 類比數位轉換器三角積分調變器反相器基底積分器相關電位移技術雜訊移頻逐次逼近式類比數位轉換器
英文關鍵詞: Analog-to-digital converter, delta-sigma modulator, inverter-based integrator, correlated level-shifting, noise shaping, successive approximation register ADC
研究方法: 實驗設計法紮根理論法比較研究觀察研究
DOI URL: http://doi.org/10.6345/NTNU202200715
論文種類: 學術論文
相關次數: 點閱:109下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在半導體產業的蓬勃發展下,CMOS製程技術不斷地進步,使得積體電路的
    尺寸越來越小且能在更低的供應電壓下操作,不論是晶片的面積或功率消耗都能
    得到大幅地下降。因此,市場上對於體積輕薄且高效能的電子產品的需求變得越
    來越高。在眾多的電子產品中,類比數位轉換器(Analog-to-Digital Converter, ADC)
    都扮演著即其重要的角色,又尤其三角積分調變器(Delta-Sigma Modulator, DSM)
    為相當熱門的研究對象。因為其獨特的超取樣技術以及雜訊移頻的特性,能有效
    地降低類比元件非理想效應對電路效能的影響,並且能將信號頻帶內的雜訊大量
    地移至高頻。三角積分調變器大多應用於高解析度且窄頻的音頻設備中。
    本論文提出一個使用反相器基底積分器和相關電位移技術的二階雜訊移頻
    SAR ADC,結合 DSM 優秀的雜訊移頻特性和雜訊移頻逐次逼近式類比數位轉換
    器低功耗的優點,並藉由新提出的在輸出端採用相關電位移技術的反相器基底積
    分器去改善以往運算放大器高功耗的缺點。此架構能在電路複雜度相當低的條件
    下,實現低功耗且高解析度的類比數位轉換器。本研究使用 UMC 180nm 1P6M
    CMOS 製程實現,供應電壓為 1.2V,取樣頻率為 3.072 MHz,頻寬為音頻應用的
    20 kHz,量測所能達到的 SNDR 為 80.7 dB,總功率消耗為 103 μW,效能指標
    FoMS為 163.5 dB。

    With the vigorous development of the semiconductor industry, CMOS process
    technology has continued to advance, making integrated circuits smaller and smaller and
    able to operate at lower supply voltages. Both chip area and power consumption can be
    greatly reduced Therefore, the market demand for electronic products that are light, thin
    and high-performance is becoming higher and higher. In many electronic products,
    analog-to-digital converters play an important role, and delta-sigma modulators are
    particularly popular research objects. Because of its unique oversampling technology
    and noise shaping characteristics, it can effectively reduce the impact of the non-ideal
    effects of analog components on circuit performance, and can greatly shift the noise in
    the signal band to high frequency. Delta-sigma modulators are mostly used in highresolution and narrow-band audio devices.
    In this paper, a noise-shaping SAR ADC with an inverter-based integrator and
    correlated level shifting technique is proposed, which combines the excellent noise
    shaping characteristic of DSM and the advantage of low power consumption of noiseshaping successive approximation register analog-to digital converter (NS SAR ADC),
    and the proposed inverter-based integrator with correlated level shifting at the output
    can improve the high power consumption shortcoming of operational amplifier. This
    architecture can realize low power consumption and high-resolution analog-to-digital
    converter in low circuit complexity. This modulator was fabricated in a 0.18-μm 1P6M UMC CMOS process.. The measured SNDR is 83.4 dB, and the input DR is 83 dB in 20 kHz signal bandwidth with a clock frequency of 3.072 MHz. The power consumption of the proposed ΔΣ modulator is 103 μW in a 1.2-V supply voltage.

    目 錄 謝 辭 i 摘 要 ii ABSTRACT iii 目 錄 v 表 目 錄 viii 圖 目 錄 ix 第一章 緒論 1 1.1 研究動機與背景 1 1.2 論文架構與研究方法 2 第二章 類比數位轉換器概論 3 2.1 前言 3 2.2 效能指標 4 2.2.1 訊號雜訊比 4 2.2.2 訊號雜訊失真比 4 2.2.3 解析度 5 2.2.4 動態範圍 5 2.2.5 無雜波干擾之動態範圍 6 2.3 量化器與量化誤差 6 2.3.1 一位元量化器 6 2.3.2 多位元量化器 8 2.3.3 量化誤差的產生 11 2.4 超取樣 13 2.5 雜訊移頻 15 2.5.1 一階雜訊移頻 17 2.5.2 二階雜訊移頻 20 2.5.3 高階雜訊移頻 23 2.6 逐次逼近式類比數位轉換器 27 2.6.1 二分搜尋演算法 27 2.6.2 SAR ADC 運作流程 28 2.7 章節結論 29 第三章 電路元件設計 30 3.1 前言 30 3.2 交換電容式電路 30 3.2.1 反向積分器 30 3.2.2 非反向積分器 32 3.2.3 傳統反相器基底之交換電容式電路 35 3.3 開關 37 3.3.1 MOS 開關 37 3.3.2 傳輸閘開關 39 3.3.3 靴帶式開關 41 3.4 共模回授電路 43 3.5 比較器 44 3.5.1 非理想效應 45 3.5.2 低電壓操作之比較器 46 3.6 真單相位時脈電路 47 3.7 逐次逼近式暫存器 47 3.8 數位類比轉換器 49 3.8.1 電容式數位類比轉換器 49 第四章 應用於音頻之二階三角積分調變器的設計與實現 51 4.1 前言 51 4.2 相關電位移技術 51 4.3 雜訊移頻 SAR ADC 原理 56 4.4 線性模型 MATLAB 模擬 57 4.5 電路非理想效應 59 4.5.1 熱雜訊 60 4.5.2 時脈抖動 61 4.5.3 反相器之有限增益 63 4.6 電路架構 65 4.6.1 電路模擬結果 67 4.7 電路佈局與實現 68 4.8 鎊線與儀器的等效電路 73 4.9 晶片量測環境 74 4.9.1 輸入訊號與輸入終端電路 74 4.9.2 供應電壓電路 75 4.9.3 濾波槽電路 75 4.9.4 量測結果 76 第五章 總結與未來展望 79 5.1 總結 79 5.2 未來展望 80 參 考 文 獻 81 自 傳 84

    [1] R. Jacob Baker, CMOS: Mixed-Signal Circuit Design, Second Edition, Wiley, IEEE Press, 2008.
    [2] D. A. Johns, K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc., 1997.
    [3] J. Silva, U. K. Moon, J. Steensgaard, and G. C. Temes, “Wideband Low-Distortion Delta-Sigma ADC Topology,” Electron. Lett., vol. 37, pp. 737-738, Jun. 2001.
    [4] S. Norsworthy, R. Schreier, and G. Temes, Delta-Sigma Data Converters: Theory, Design, and Simulation. New York: IEEE Press, 1996.
    [5] R. Schreier and G. C. Temes, Understanding Delta–Sigma Data Converters: New York: Wiley, 2004.
    [6] K. C. H. Chao, S. Nadeem, W. L. Lee, and C. G. Sodini, “A Higher-Order Topology for Interpolative Modulators for Oversampling A/D Converters,” IEEE Trans. Circuits Syst., vol. 37, no. 3, pp. 309-318, Mar. 1990.
    [7] W. L. Lee and C. G. Sodini, “A Topology for Higher-Order Interpolative Coders,” in Proc. IEEE Intel. Symp. Circuits Syst., 1987, pp.459-462.
    [8] B. DelSignore, D. Kerth, N. Sooch, anf E. Swansooon, “ A Monolithic 20-B Delta-Sigma Modulator,” IEEE J. Solid-State Circuits, vol. 25, no. 6, pp. 1311-1317, Dec. 1990.
    [9] P. Ferguson, A. Ganesan, R. Adarns, S. Vincelette, R. Libert, A. Volpe, D. Andreas, A.Charpentier, and J. Dattorro, “An 18b 20KHz Dual ΣΔ A/D Converter,” in Proc. ISSCC., Feb. 1991, pp. 68-292.
    [10] J. McCreary and P. R. Gray, “A high-speed, all-MOS successive-approximation weighted capacitor A/D conversion technique,” IEEE Int. Solid-State Circuits Conf., Feb. 1975, pp. 38–39.
    [11] T. Tille, J. Sauerbrey, and D. Schmitt-Landsiedel,” A Low-Voltage MOSFET-Only ΣΔ Modulator for Speech Band Applications Using Depletion-Mode MOS-Capacitors in Combined Series and Parallel Compensation,” in Proc. IEEE Intel. Symp. Circuits Syst., May 2001, pp. 376-379.
    [12] J. Sauerbrey, T. Tille, D. S. Landsiedel, and R. Thewes, “A 0.7-V MOSFET-Only Switched-Opamp ΣΔ Modulator in Standard Digital CMOS Technology,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1662-1669 Dec. 2002.
    [13] Y. Chae and G. Han, "Low Voltage, Low Power, Inverter-Based Switched-Capacitor Delta-Sigma Modulator," IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 458-472, Feb. 2009.
    [14] Z. Chen, M. Miyahara and A. Matsuzawa, "A 9.35-ENOB, 14.8 fJ/conv.-step fully-passive noise-shaping SAR ADC," in Proc. IEEE Symp. VLSI Circuits, 2015, pp. C64-C65.
    [15] M. Dessouky and A. Kaiser, “Input switch configuration suitable for rail-to-rail operation of switched op amp circuits,” Electron. Lett., vol. 35, no. 1, pp. 8-10, Jan. 1999.
    [16] S. Porrazzo et al., “A 155 μW 88-dB DR discrete-time modulator for digital hearing aids exploiting a summing SAR ADC quantizer,” IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 5, pp. 573–582, Oct. 2013.
    [17] M. Honarparvar, J. M. de la Rosa and M. Sawan, "A 0.9-V 100- μ W Feedforward Adder-Less Inverter-Based MASH ΔΣ Modulator With 91-dB Dynamic Range and 20-kHz Bandwidth," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 11, pp. 3675-3687, Nov. 2018.
    [18] H. Luo, Y. Han, R. C. C. Cheung, X. Liu and T. Cao, "A 0.8-V 230-µW 98-dB DR Inverter-Based ΔΣ Modulator for Audio Applications," IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2430-2441, Oct. 2013.
    [19] T. Christen, "A 15-bit 140-µW Scalable-Bandwidth Inverter-Based ΔΣ Modulator for a MEMS Microphone With Digital Output," IEEE J. Solid-State Circuits, vol. 48, no. 7, pp. 1605-1614, July 2013.
    [20] S. -E. Cho, B. Kim, J. -Y. Sim and H. -J. Park, "Low-Power Small-Area Inverter-Based DSM for MEMS Microphone," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 11, pp. 2392-2396, Nov. 2020.
    [21] Y. Hwang, Y. Song, J. Park and D. Jeong, "A 0.6-to-1V 10k-to-100kHz BW 11.7b-ENOB Noise-Shaping SAR ADC for IoT sensor applications in 28-nm CMOS," in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Tainan, 2018, pp. 247-248.
    [22] B. R. Gregoire and U. Moon, "An Over-60 dB True Rail-to-Rail Performance Using Correlated Level Shifting and an Opamp With Only 30 dB Loop Gain," IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 2620-2630, Dec. 2008.

    無法下載圖示 電子全文延後公開
    2027/07/05
    QR CODE