簡易檢索 / 詳目顯示

研究生: 張家偉
CHANG, Chia-Wei
論文名稱: 原子力顯微術應用:鐵蛋白結構變異分析
Analysis of Ferritin structural Alterations with AFM Microscopy
指導教授: 王忠茂
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 59
中文關鍵詞: 原子力顯微術力曲線分析法鐵蛋白
英文關鍵詞: Atomic Force Microscopy, Force Curve, Ferritin
論文種類: 學術論文
相關次數: 點閱:103下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用磁性模組原子力顯微術(Magnetic Force Microscopy簡稱MFM)、導電模組原子力顯微術(Conductive Atomic Force Microscopy簡稱C-AFM)以及力曲線(Force Curve)分析法辨識鐵蛋白與缺鐵鐵蛋白的結構差異。結果顯示,在施予偏壓下,鐵蛋白與探針間的引力比缺鐵鐵蛋白高,顯示二者結構可能因鐵核存在而有所差異。對此,我們也以磁鐵微粒與其他蛋白質進行比較。此外,有鑒於蛋白質經氫氧化鈉處理後會逐漸變性,我們也以之對鐵蛋白與缺鐵蛋白進行分析,發現二者均會因氫氧化鈉處理致使其與探針間的引力逐漸下降,二者間差異逐漸趨於一致。

    In this thesis, we conducted research on the difference between the structure of ferritin and apoferritin using magnetic force microscopy (MFM), conductive atomic force microscopy (C-AFM) and force curve analysis. Experimental results showed that the attraction force between ferritin and probe is high than that between apoferritin and probe, suggesting that the magnetic iron core embedded in ferritin might play a key role. For this hypothesis, we analyzed magnetic Fe3O4 nanoparticles and other proteins for comparison. In view of the fact that denaturing often occur as proteins are treated with sodium hydroxide, we implemented experiments in this way to differentiate ferritin and apoferritin. According to the decreasing attraction force towards the probe revealed during the treatment with NaOH, both protein molecules denatured gradually, but the difference was fading gradually as well.

    圖目錄 I 表目錄 VII 中文摘要 i 英文摘要 ii 第一章 緒論 1 第二章 實驗 7 2.1 化學藥品 7 2.2 實驗設備 9 2.3 修飾電極的製備 10 2.4 原子力顯微鏡的操作步驟 12 第三章 實驗結果與討論 15 3.1 鐵蛋白之力曲線(Force curve)分析 15 3.2 其他蛋白質的Force Curve分析 24 3.3 蛋白質變性結構分析 33 3.4 磁效應原子力顯微鏡影像分析 42 第四章 結論 44 第五章 參考文獻 45 第六章 附錄 47

    [1] T. M. Kelley and C. D. Frisbie, J. Vac. Sci. Technol. 2000, B 18, 632.
    [2] M. J. Donlin, R. F. Frey, C. Putnam, J. K. Proctor, J. K. Bashkin, J. Chem. Educ. 1998, 75, 437.
    [3] D. Rugar, H. J. Mamin, P. Guethner, S. E. Lambert, J. E. Stern, I. McFadyen, T. Yogi, J. Appl. Phys. 1990, 68, 1169.
    [4] Insight II graphical program; Molecular Simulations, Inc.
    [5] B. S. Skikne, P. Whittaker, A. Cooke, J. D. Cook, Br. J. Haematol. 1995, 90, 681.
    [6] S. S. Gropper, J. L. Smith, J. L. Groff, Advanced Nutrition and Human Metabolism 5th Edition
    [7] G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Phys. Rev. Lett. 1982, 49, 57.
    [8] G. Binnig, H. Rohrer, Rev. Mod. Phys. 1999, 71, S324.
    [9] R. J. Colton, D. R. Baselt, Y. F. Dufrêne, J.-B. D. Green, G. U. Lee, Curr. Opin. Chem. Biol. 1997, 1, 370.
    [10] L. A. Bottomley, Anal. Chem. 1998, 70, 425.
    [11] G. Binnig, C. F. Quate, C. Gerber, Phys. Rev. Lett. 1986, 56, 930.
    [12] J. Y. Kim, H. K. Lee, S. C. Kim, J. Membr. Sci. 1999, 163, 159.
    [13] N. Yu, A. A. Polycarpou, J. Colloid Interface Sci. 2004, 278, 428.
    [14] 楊志文,原子力顯微術原理及其應用,原力精密儀器公司技術顧 問。
    [15] V. Shahin, Y. Ludwig, C. Schafer, D. Nikova, H. Oberleithner, J. Cell Sci. 2005, 118, 2881.
    [16] B. Cappella, G. Dietler, Surface Science Reports 1999, 34, 1.
    [17] 楊鏡堂,童凱煬,AFM原子力顯微鏡,國立清華大學動力機械工程 學系。
    [18] B. Cappella, P. Baschieri, C. Frediani, P. Miccoli, C. Ascoli, IEEE Eng. Med. Biol. Mag. 1997, 16, 58.
    [19] J. W. M. Bulte, R. A. Brooks, Scientific and clinical applications of magnetic carriers, Plenum, New York, 1997.
    [20] M. Miglierinia, A. Lancokb, Acta Physica Polonica A. 2010, 118, 944.
    [21] R. D. Gomez, A. O. Pak, A. J. Anderson, E. R. Burke, A. J. Leyendecker, I. D. Mayergoyz, J. Appl. Phys. 1998, 83, 6226.
    [22] M. A. Baraibar, A. G. Barbeito, B. B. Muhoberac, R. Vidal, J. Biol. Chem. 2008 , 283, 31679.
    [23] R. R. Crichton, C. F. A. Bryce, Biochem. J. 1973, 133, 289.

    下載圖示
    QR CODE