研究生: |
張軒誌 hsuan chih Chang |
---|---|
論文名稱: |
三價離子摻雜於電解質BaZrO3的導電趨勢 Trends of the Ionic Conductivity of Cation-Doped Barium Zirconates |
指導教授: |
王禎翰
Wang, Jeng-Han |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 136 |
中文關鍵詞: | 電解質 、固態氧化物燃料電池 、BaZrO3 |
英文關鍵詞: | electrolyte, SOFC, barium zircornate |
論文種類: | 學術論文 |
相關次數: | 點閱:288 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗為探討BaZr1-xMxO3, (M = In3+、Y3+、 Yb3+、 Dy3+、 Gd3+、 Sm3+、 Nd3+、 La3+)不同摻雜金屬的導電趨勢,並利用計算的結果去解釋。實驗部分為使用燃燒法合成不同濃度的摻雜金屬,並使用XRD、SEM、EDX、ICP-MS來確認物理及化學性質。再把粉末壓錠,並燒結於1250、1450、1600 ℃,持溫5、10、40小時,形成BaZr1-xMxO3 試片,進行導電度測試,通入氣氛為濕-空氣、濕-氫氣、乾-氮氣、乾-氫氣。
計算部分為使用密度泛涵理論(DFT)計算摻雜於BaZrO3的氧空缺(V_o^(..))及氫缺陷的形成能以及氧空缺、氫缺陷、氫氧空缺移動的反應熱。
由實驗及計算的結果顯示,導電率會隨著摻雜的濃度增加或持溫時間降低而上升,燒結溫度對導電率的影響則不大。從化學的觀點來看,導電率會受到摻雜金屬的離子半徑所影響,較小的離子半徑,導電率佳,且計算出來的反應熱低。
Trends of the ionic conductivity of BaZr1-xMxO3, (M = In3+, Y3+, Yb3+, Dy3+, Gd3+, Sm3+, Nd3+, La3+) have been experimentally and computationally examined in this work. Experimentally, the powder with different dopant ratios , 2%, 5%, 10% and 20%, has been initially synthesized by GNP (glycine nitrate process) method, and it physical and chemical properties have been examined by XRD, SEM, EDX and ICP-Mass (Inductively coupled plasma mass spectrometry). The synthesized powder is further pressurized and sintered at different temperatures, 1250, 1450 and 1600 oC and heating period, 5, 10 and 40 hours, to form BaZr1-xMxO3 pellets for the conductivity tests in various atomspheres: dry N2, dry H2, wet air and wet H2. Computationally, formation energies of oxygen vacancy V_o^(..) and proton defect OH_o^' and enthalpy of V_o^(..) migration, proton hopping and OH_o^' diffusion of the doped BaZrO3 have been systematically examine by the means of density functional theory (DFT) calculation.
Based on the experimental and computational works, the results show that the ionic conductivity will increase as the dopant ratio raises and the sinter period decreases. The sinter temperature has limited effect on the conductivity. From the chemical aspect, the conductivity is systematically influenced by the ionic radius of the doped cation. The small radius of the dopant results a better conductivity from the experimental measurement and lower enthapy in the DFT calculation.
1. Gorte, S. M. a. R. J., Direct Hydrocarbon Solid Oxide Fuel Cells. Chem. Rev 2004, 104, 4845-4865.
2. Hsin-Lung Lin *, R.-K. C., Chun-Lin Kuo, Chih-Wei Chang, Synthesis of BaCeO3 powders by a fast aqueous citrate–nitrate process. Journal of Non-Crystalline Solids 2007, 353, 1188-1194.
3. M. D. Gross, J. M. V. a. R. J. G., Recent progress in SOFC anodes for directutilization of hydrocarbons. J. Mater. Chem 2007, 17, 3071-3077.
4. C. Brahim a, A. R. a., M. Cassir a,*, M. Putkonen b, L. Niinisto¨ b, Electrical properties of thin yttria-stabilized zirconia overlayers produced by atomic layer deposition for solid oxide fuel cell applications. Applied Surface Science 2007, 253, 3962-3968.
5. David A. Andersson*†, S. I. S., Natalia V. Skorodumova§, Igor A. Abrikosov‡, and Bo¨ rje Johansson*, Optimization of ionic conductivity in doped ceria. PNAS 2006, 103, 3518-3521.
6. R.O. Fuentesa, b., R.T. Bakerb, Synthesis and properties of Gadolinium-doped ceria solid solutions for IT-SOFC electrolytes. I NTERNATI ONAL JOURNAL OF HYDROGEN ENERGY 2008, 33, 3480-3484.
7. Embs, A. B. Æ. S. D. Æ. P. R. Æ. J., Proton diffusivity in the BaZr0.9Y0.1O3-δ proton conductor. J Appl Electrochem 2009, 39, 471-475.
8. Fumitada Iguchi a, Noriko Sata a, Takao Tsurui b, Hiroo Yugami, Microstructures and grain boundary conductivity of BaZr1-xYxO3 (x=0.05, 0.10, 0.15) ceramics. 2007.
9. Katsuhiro Nomura , H. K., Transport properties of Ba(Zr0.8Y0.2)O3-δ perovskite. Solid State Ionics 2007, 178, 661-665.
10. Peter Babilo, T. U., Sossina M. Haile, Processing of yttrium-doped barium zirconate for high proton conductivity. J. Mater. Res 2007, 22, 1322-1330.
11. Schober, H. G. B. a. T., Electrical Conductivity of the High-Temperature Proton Conductor BaZr0.9Y0.1O2.95. J. Am. Ceram. Soc 2000, 83, 768-772.
12. T. Schnellera, T. Schoberb, Chemical solution deposition prepared dense proton conducting Y-doped BaZrO3 thin films for SOFC and sensor devices. Solid State Ionics 2003, 164, 131-136.
13. V. P. Gorelov*, V. B. B., Yu. N. Kleshchev**, and V. P. Brusentsov**, Preparation and Electrical Conductivity of BaZr1-xRxO3–δ(R = Sc, Y, Ho, Dy, Gd, In). INORGANIC MATERIALS 2001, 37, 636-640.
14. Wensheng Wang, A. V. V., Ionic and electron–hole conduction in BaZr0.93Y0.07O3-δ by 4-probe dc measurements. Journal of Power Sources 2005, 142, 1-9.
15. Cristian D. Savaniu, J. C.-V. a. J. T. S. I., Investigation of proton conducting BaZr0.9Y0.1O2.95 : BaCe0.9Y0.1O2.95
core–shell structures. J. Mater. Chem 2005, 15, 598-604.
16. E. Gorbova a, V. M., D. Medvedev a, A. Demina,1, P. Tsiakaras b, Investigation of the protonic conduction in Sm doped BaCeO3. Journal of Power Sources 2008, 181, 207–213.
17. Gaetano Chiodellia, L. M. a., b,∗, Cristina Tealdi b, Simona Barisonc, Marino Battagliarin c, Lioudmila; Doubovac, M. F., Cecilia Mortalo` c, Rosalba Gerbasi d, Role of synthetic route on the transport properties of BaCe1-xYxO3 proton conductor. Journal of Alloys and Compounds 2009, 470, 477-485.
18. Guilin Ma*, H. M., Hiroyasu Iwahara, Ionic conduction and nonstoichiometry in non-doped BaxCeO 3-α. Solid State Ionics 1999, 122, 237-247.
19. Hee Jung Park ∗, C. K., Kyu Hyoung Lee, Sang Mock Lee, Eun Sung Lee, Interfacial protonic conduction in ceramics. Journal of the European Ceramic Society 2009, 29, 2429-2437.
20. Jin-Xia Wang a, L.-P. L. b., ∗, Branton J. Campbell b, Zhe Lvc,; Yuan Ji a, Y.-F. X., Wen-Hui Sua,c, Structure, thermal expansion and transport properties of BaCe1-xEuxO3-δ oxides. Materials Chemistry and Physics 2004, 86, 150–155.
21. Kui Xiea, R. Y., Xiaorui Chena, SonglinWanga, Yinzhu Jiangc,; Xingqin Liua, Guangyao Menga, A stable and easily sintering BaCeO3-based proton-conductive electrolyte. Journal of Alloys and Compounds 2009, 473, 323–329.
22. P. Pasierb∗, M. W., S. Komornicki, M. Rekas, Electrochemical impedance spectroscopy of BaCeO3 modified by Ti and Y. Journal of Power Sources 2009, 194, 31–37.
23. Robert C.T. Slade a~* , S. D. F. a., Narendra Singh a,b, Investigation of protonic conduction in Yb- and Y-doped barium zirconates. Solid State Ionics 1995, 82, 135-141.
24. T. Hea**, K. D. K., Yu.M. Baikovb, J. Maiera, Impedance spectroscopic study of thermodynamics and kinetics of a Gd-doped BaCeO3, single crystal. Solid State Ionics 1997, 95, 301-308.
25. W. Suksamai, I. S. M., Measurement of proton and oxide ion fluxes in a working Y-doped BaCeO3 SOFC. Solid State Ionics 2007, 178, 627–634.
26. He Wang, R. P., w Xinfeng Wu, Jinlin Hu, and Changrong Xia, Sintering Behavior and Conductivity Study of Yttrium-Doped BaCeO3–BaZrO3 Solid Solutions Using ZnO Additives. J. Am. Ceram. Soc 2009, 92, 2623-2629.
27. Jinxia Li, J.-L. L., Karl T. Chuang, Alan R. Sanger, Chemical stability of Y-doped Ba(Ce,Zr)O3 perovskites in H2S-containing H2. Electrochimica Acta 2008, 53, 3701-3707.
28. J. Wu, R. A. D., ‡ M. S. Islam,*,‡ and S. M. Haile*,†, Atomistic Study of Doped BaCeO3: Dopant Site-Selectivity and Cation Nonstoichiometry. Chem. Mater. 2005, 17, 846-851.
29. Tor S. Bjørheim a, A. K. b., Istaq Ahmed c, Reidar Haugsrud a, Svein Stølen a, Truls Norby a, A combined conductivity and DFT study of protons in PbZrO3 and alkaline earth zirconate perovskites. Solid State Ionics 2010, 181, 130-137.
30. M. E. Arroyo y de Dompablo, ‡ Yueh-Lin Lee,§ and D. Morgan§, First Principles Investigation of Oxygen Vacancies in ColumbiteMNb2O6(M=Mn, Fe, Co, Ni, Cu). Chem. Mater. 2010, 22, 906-913.
31. Thangadurai, F. T. a. V., Transformation of Proton-Conducting Perovskite-Type into Fluorite-Type Fast Oxide Ion Electrolytes Using a CO2 Capture Technique and Their Electrical Properties. Inorg. Chem. 2008, 47, 8972-8984.
32. Wei Wei, Y. D., * Meng Guo, Lin Yu, and Baibiao Huang, Density Functional Characterization of the Electronic Structure and Optical Properties of N-Doped, La-Doped, and N/La-Codoped SrTiO3. J. Phys. Chem 2009, 113, 15046–15050.