研究生: |
葉嘉翠 Yeh, Chia-Tsui |
---|---|
論文名稱: |
禽類IgY抗體在新冠病毒之保護、預防與檢測研究 The study of avian IgY antibody in the protection, prevention and detection of novel coronavirus |
指導教授: |
李冠群
Lee, Guan-Chiun |
口試委員: |
謝博軒
Hsieh, Po-Shiuan 王玉麒 Wang, Yu-Chie 陳正忠 Chen, Cheng-Cheung 劉正哲 Liu, Cheng-Che 李冠群 Lee, Guan-Chiun |
口試日期: | 2023/01/13 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 189 |
中文關鍵詞: | 蛋黃免疫球蛋白 、新型冠狀病毒 、刺突蛋白或棘蛋白 、核殼蛋白或N蛋白 |
英文關鍵詞: | yolk immunoglobulins (IgY), SARS-CoV-2, coronavirus, spike protein (S protein), nucleocapsid protein (N protein) |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202300310 |
論文種類: | 學術論文 |
相關次數: | 點閱:105 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因應對生物醫學研究的需求,實驗動物的福祉及符合動物實驗3R的要求日益提升。過去以小鼠、兔子、山羊、牛、馬…等傳統動物模式來產製多株抗體的方式,將被嚴格的監督、要求與限制。所以尋找取代動物抗體產製的新方法及動物模式,成為一個非常重要的課題。蛋黃免疫球蛋白(yolk immunoglobulins,IgY),是卵黃中唯一的免疫球蛋白,以動物種源發生學的距離,哺乳類與鳥類的同源性低的優勢,可以產生具有高專一性的抗體,在某些免疫分析中,常用雞卵黃 IgY 替代哺乳類 IgG。IgY 特殊的分子結構與哺乳類免疫球蛋白略有差異,以至於不會引發有害人體的補體反應,也不會與類風濕性因子(rheumatoid factor)結合,也不會與哺乳動物的 IgG 產生交互作用(cross reaction)。只要收集免疫抗原後的雞蛋,加以純化取得卵黃中的抗體即可,不用犧牲動物或是長期侵入性的抽血取得動物血清。雞卵黃具有非侵入性、可持續高產量、飼育及純化成本低的種種優點,成為本研究中產製多株抗體的首選動物模式。本研究以抗原免疫蛋雞後,待蛋雞血清中專一性抗體濃度升高後,將蛋雞產出的雞蛋進行卵黃 IgY 抗體的純化,並進行抗體的專一性及靈敏度測試。
本研究以新型冠狀病毒(SARS-CoV-2)之刺突蛋白(又稱棘蛋白)(spike protein or S protein)蛋白次單元蛋白 S1、S2 誘發的 IgY 中和抗體,在 Vero E6 細胞株的感染中和力試驗中證明具有良好阻抗病毒的效果,進一步在倉鼠鼻滴定病毒感染試驗中,一次性投予抗 S 蛋白之 IgY 中和抗體,能有效降低新型冠狀病毒感染及病徵的嚴重程度。而 SARS-CoV-2 新型冠狀病毒抗N(nucleocapsid proteins;核殼蛋白)蛋白 IgY 抗體,則可專一且靈敏的於 11 株人類常見的呼吸道病毒試驗的酵素結合免疫吸附分析法(ELISA)試驗中,在 100~1000 個病毒的狀態下,檢測出 SARS-CoV-2 的病毒株。結果顯示誘發的 IgY 抗體具有高抗體效價特、專一性及中和力價。本研究亦誘發抗 SARS-CoV-2 病毒的 IgY 抗體,並且利用 IgY 抗體進行 ELISA、Western Blot、IHC、IF 等試驗的運用。總而言之,本研究證明了 IgY 抗體具有抵抗呼吸道傳染性病原的能力,可發展成具阻抗病原感染的預防和治療的中和性抗體藥品,及發展成更優良的檢測工具。
The requirements for animal experiments in biomedical research, the welfare of experimental animals and the compliance with the 3Rs of animal experiments are becoming more and more stringent. In the past, traditional animal models such as mice, rabbits, goats, cows, and horses were used to produce polyclonal antibodies, which will be strictly supervised, required, and restricted. Therefore, finding new methods and animal models to replace traditional animal antibody (Ab) production has become a very important topic. Egg yolk immunoglobulins (yolk immunoglobulins, IgY) are the only immunoglobulins in egg yolk. In terms of evolution, mammals and birds have very low homology. IgY can be used as a highly specific antibody for the application in mammals. In some immune assays chicken egg yolk IgY is often used instead of mammalian IgG. The special molecular structure of IgY is slightly different from that of mammalian immunoglobulins, so that IgY does not trigger harmful human complement responses, nor does it bind to rheumatoid factor and cross react with mammalian IgG. It is only necessary to collect eggs after immunization with antigens and purify antibodies in the yolk without sacrificing animals to obtain animal serum or long-term invasive blood draws. The advantages of non-invasiveness, sustainable high yield, and low cost of breeding and purification have made chicken egg yolk IgY become the primary choice for the development of animal models for producing polyclonal antibodies in this research. In our research, after immunizing laying hens with antigens, the concentration of specific antibodies in the serum of laying hens increased. The egg yolk IgY antibodies were purified from eggs produced by laying hens, and the specificity and sensitivity of the antibodies were tested.
The subunit proteins, S1 and S2, of the spike protein (S protein) of the new coronavirus SARS-CoV-2 which are human respiratory infectious pathogens were used to induce IgY neutralizing antibodies. In the infection neutralization test of the Vero E6 cell line, it has been proved that the IgY has a good effect of resisting the virus infection. Further, in the hamster nasal titration virus infection test, one-time administration of IgY neutralizing Ab against the S protein can effectively reduce the infection of the new coronavirus and severity of symptoms. In the test of 11 strains of common human respiratory viruses by enzyme-linked immunosorbent assay (ELISA) test, the IgY Ab against N (nucleocapsid) protein of SARS-CoV-2 specifically and sensitively detected the strain of SARS-CoV-2. The results suggest that the induced IgY antibody shows high antibody titer, specificity, and excellent neutralizing potency. In this research, SARS-CoV-2 virus was also used to induce IgY antibody, and the ELISA, Western Blot, IHC, IF and other tests using the induced IgY antibody were performed. In conclusion, it has been confirmed that IgY antibodies were able to resist respiratory infectious pathogens, and they could be applied to develop neutralizing antibodies drugs for resisting pathogenic infection, and develop a better detection tool in the future.
1. Abbas, A.T., et al., IgY antibodies for the immunoprophylaxis and therapy of respiratory infections. Human vaccines & immunotherapeutics, 2019. 15(1): p. 264-275.
2. Agrawal, R., et al., Comparative study on immunoglobulin Y transfer from breeding hens to egg yolk and progeny chicks in different breeds of poultry. Vet World, 2016. 9(4): p. 425-31.
3. Ahmed, S.F., A.A. Quadeer, and M.R. McKay Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies. Viruses, 2020. 12, DOI: 10.3390/v12030254.
4. Akita, E. and S. Nakai, Comparison of four purification methods for the production of immunoglobulins from eggs laid by hens immunized with an enterotoxigenic E. coli strain. Journal of immunological methods, 1993. 160(2): p. 207-214.
5. Albertsson, P.-Å., Partition of Cell Particles and Macromolecules in Polymer Two-Phase Systems, in Advances in Protein Chemistry, C.B. Anfinsen, J.T. Edsall, and F.M. Richards, Editors. 1970, Academic Press. p. 309-341.
6. Almagro, J.C., et al., Progress and Challenges in the Design and Clinical Development of Antibodies for Cancer Therapy. Front Immunol, 2017. 8: p. 1751.
7. Amro, W.A., W. Al-Qaisi, and F. Al-Razem, Production and purification of IgY antibodies from chicken egg yolk. Journal of Genetic Engineering and Biotechnology, 2018. 16(1): p. 99-103.
8. Ancuceanu, R. and M. Neagu, Immune based therapy for melanoma. Indian J Med Res, 2016. 143(2): p. 135-44.
9. Anton, M., Egg yolk: structures, functionalities and processes. Journal of the Science of Food and Agriculture, 2013. 93(12): p. 2871-2880.
10. Anton, M., et al., Chemical and structural characterisation of low-density lipoproteins purified from hen egg yolk. Food Chemistry, 2003. 83(2): p. 175-183.
11. Apperson, K.D., et al. Histology of the Ovary of the Laying Hen (Gallus domesticus). Veterinary Sciences, 2017. 4, DOI: 10.3390/vetsci4040066.
12. Arakawa, T. and S.N. Timasheff, Mechanism of polyethylene glycol interaction with proteins. Biochemistry, 1985. 24(24): p. 6756-6762.
13. Atyeo, C., et al., Distinct Early Serological Signatures Track with SARS-CoV-2 Survival. Immunity, 2020. 53(3): p. 524-532.e4.
14. Bai, Z., et al., The SARS-CoV-2 Nucleocapsid Protein and Its Role in Viral Structure, Biological Functions, and a Potential Target for Drug or Vaccine Mitigation. Viruses, 2021. 13(6).
15. Bar-On, Y.M., et al., SARS-CoV-2 (COVID-19) by the numbers. eLife, 2020. 9: p. e57309.
16. Bertram, S., et al., TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. Journal of virology, 2013. 87(11): p. 6150-6160.
17. Bewley, K.R., et al., Quantification of SARS-CoV-2 neutralizing antibody by wild-type plaque reduction neutralization, microneutralization and pseudotyped virus neutralization assays. Nature Protocols, 2021. 16(6): p. 3114-3140.
18. Boehm, T., I. Hess, and J.B. Swann, Evolution of lymphoid tissues. Trends in Immunology, 2012. 33(6): p. 315-321.
19. Bosch, B.J., et al., The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. Journal of virology, 2003. 77(16): p. 8801-8811.
20. Brownlie, R. and B. Allan, Avian toll-like receptors. Cell and Tissue Research, 2011. 343(1): p. 121-130.
21. Buchmann, K., Evolution of Innate Immunity: Clues from Invertebrates via Fish to Mammals. Frontiers in Immunology, 2014. 5.
22. Burley, R., The avian egg. Chemistry and Biology, 1989.
23. Calonga-Solís, V., et al., Unveiling the Diversity of Immunoglobulin Heavy Constant Gamma (IGHG) Gene Segments in Brazilian Populations Reveals 28 Novel Alleles and Evidence of Gene Conversion and Natural Selection. Front Immunol, 2019. 10: p. 1161.
24. Chalamaiah, M., et al., Physicochemical and functional properties of livetins fraction from hen egg yolk. Food bioscience, 2017. 18: p. 38-45.
25. Chalghoumi, R., et al., Hen egg yolk antibodies (IgY), production and use for passive immunization against bacterial enteric infections in chicken: a review. Biotechnologie, Agronomie, Société et Environnement, 2009. 13(3).
26. Chan, J.F., et al., Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect, 2020. 9(1): p. 221-236.
27. Chan, J.F.-W., et al., Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging microbes & infections, 2020. 9(1): p. 221-236.
28. Chen, C.Y., et al., Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA. J Mol Biol, 2007. 368(4): p. 1075-86.
29. Chen, L., et al., RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. Emerging microbes & infections, 2020. 9(1): p. 313-319.
30. Chen, S., A. Cheng, and M. Wang, Innate sensing of viruses by pattern recognition receptors in birds. Veterinary Research, 2013. 44(1): p. 82.
31. Costa, A.R., et al., Glycosylation: impact, control and improvement during therapeutic protein production. Crit Rev Biotechnol, 2014. 34(4): p. 281-99.
32. Cui, J., F. Li, and Z.L. Shi, Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol, 2019. 17(3): p. 181-192.
33. da Silva, W.D. and D.V. Tambourgi, IgY: a promising antibody for use in immunodiagnostic and in immunotherapy. Veterinary immunology and immunopathology, 2010. 135(3-4): p. 173-180.
34. Davalos-Pantoja, L., et al., A comparative study between the adsorption of IgY and IgG on latex particles. Journal of Biomaterials Science, Polymer Edition, 2000. 11(6): p. 657-673.
35. Davani, D., Z. Pancer, and M.J.H. Ratcliffe, Ligation of Surface Ig by Gut-Derived Antigen Positively Selects Chicken Bursal and Peripheral B Cells. The Journal of Immunology, 2014. 192(7): p. 3218-3227.
36. De Wit, E., et al., SARS and MERS: recent insights into emerging coronaviruses. Nature reviews microbiology, 2016. 14(8): p. 523-534.
37. Deignan, T., et al., Comparative analysis of methods of purification of egg yolk immunoglobulin. Food and agricultural immunology, 2000. 12(1): p. 77-85.
38. Duong-Ly, K.C. and S.B. Gabelli, Chapter Seven - Salting out of Proteins Using Ammonium Sulfate Precipitation, in Methods in Enzymology, J. Lorsch, Editor. 2014, Academic Press. p. 85-94.
39. Ferreira Júnior, Á., et al., Biology and Molecular Structure of Avian IgY Antibody, in IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, X.-Y. Zhang, et al., Editors. 2021, Springer International Publishing: Cham. p. 59-70.
40. Folegatti, P.M., et al., Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. The Lancet, 2020. 396(10249): p. 467-478.
41. Frumkin, L.R., et al., Egg-Derived Anti-SARS-CoV-2 Immunoglobulin Y (IgY) With Broad Variant Activity as Intranasal Prophylaxis Against COVID-19. Front Immunol, 2022. 13: p. 899617.
42. Furlong, R.F., Insights into vertebrate evolution from the chicken genome sequence. Genome Biology, 2005. 6(2): p. 207.
43. Gambón-Deza, F., C. Sánchez-Espinel, and S. Magadán-Mompó, The immunoglobulin heavy chain locus in the platypus (Ornithorhynchus anatinus). Molecular Immunology, 2009. 46(13): p. 2515-2523.
44. Ge, S., et al., The Domestic Hen, in IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, X.-Y. Zhang, et al., Editors. 2021, Springer International Publishing: Cham. p. 15-30.
45. Geng, F., et al., N-Glycoproteomic Analysis of Chicken Egg Yolk. Journal of Agricultural and Food Chemistry, 2018. 66(43): p. 11510-11516.
46. Ghetie, V. and E.S. Ward, Multiple Roles for the Major Histocompatibility Complex Class I– Related Receptor FcRn. Annual Review of Immunology, 2000. 18(1): p. 739-766.
47. Gilgunn, S., et al., Comprehensive N-Glycan Profiling of Avian Immunoglobulin Y. PLOS ONE, 2016. 11(7): p. e0159859.
48. Gimeno, I. and K. Schat, Virus-induced immunosuppression in chickens. Avian diseases, 2018. 62(3): p. 272-285.
49. Hammer, D., The immune system in chickens. Avian Pathology, 1974. 3(2): p. 65-78.
50. Han, Q., et al., Coronavirus 2019-nCoV: A brief perspective from the front line. Journal of Infection, 2020. 80(4): p. 373-377.
51. Harris, L.J., et al., Refined Structure of an Intact IgG2a Monoclonal Antibody. Biochemistry, 1997. 36(7): p. 1581-1597.
52. He, Y. and P.J. Bjorkman, Structure of FcRY, an avian immunoglobulin receptor related to mammalian mannose receptors, and its complex with IgY. Proceedings of the National Academy of Sciences, 2011. 108(30): p. 12431-12436.
53. He, Y., et al., Mapping of antigenic sites on the nucleocapsid protein of the severe acute respiratory syndrome coronavirus. Journal of clinical microbiology, 2004. 42(11): p. 5309-5314.
54. Hernández-Campos, F.J., E. Brito-De la Fuente, and B. Torrestiana-Sánchez, Purification of egg yolk immunoglobulin (IgY) by ultrafiltration: effect of pH, ionic strength, and membrane properties. J Agric Food Chem, 2010. 58(1): p. 187-93.
55. Hilser, V.J. and E.B. Thompson, Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins. Proc Natl Acad Sci U S A, 2007. 104(20): p. 8311-5.
56. Hincke, M.T., et al., The eggshell: structure, composition and mineralization. FBL, 2012. 17(4): p. 1266-1280.
57. Hof, D., M.O. Hoeke, and J.M.H. Raats, Multiple-antigen immunization of chickens facilitates the generation of recombinant antibodies to autoantigens. Clinical and Experimental Immunology, 2008. 151(2): p. 367-377.
58. Hoffmann, M., et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. cell, 2020. 181(2): p. 271-280. e8.
59. Hu, B., et al., Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 2021. 19(3): p. 141-154.
60. Huang, T., et al., Analysis of Immunoglobulin Transcripts in the Ostrich Struthio camelus, a Primitive Avian Species. PLOS ONE, 2012. 7(3): p. e34346.
61. Huang, T., et al., Identification of a Transcriptionally Forward α Gene and Two υ Genes within the Pigeon (Columba livia) IgH Gene Locus. The Journal of Immunology, 2018. 200(11): p. 3720-3728.
62. Huang, T., et al., Molecular analysis of the immunoglobulin genes in goose. Developmental & Comparative Immunology, 2016. 60: p. 160-166.
63. Huang, Y., et al., Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica, 2020. 41(9): p. 1141-1149.
64. Imai, M., et al., Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proceedings of the National Academy of Sciences, 2020. 117(28): p. 16587-16595.
65. Jensenius, J.C., et al., Eggs: conveniently packaged antibodies. Methods for purification of yolk IgG. Journal of immunological methods, 1981. 46(1): p. 63-68.
66. Ji, S., et al., An easy and rapid separation method for five major proteins from egg white: Successive extraction and MALDI-TOF-MS identification. Food Chemistry, 2020. 315: p. 126207.
67. Johnson, A.L., Ovarian follicle selection and granulosa cell differentiation1 1Presented as part of the Symposium: Avian Reproduction: Foundational Advances and Practical Applications at the Poultry Science Association's annual meeting in Corpus Christi, Texas, July 14 to 17, 2014. Poultry Science, 2015. 94(4): p. 781-785.
68. Kasahara, M., T. Suzuki, and L.D. Pasquier, On the origins of the adaptive immune system: novel insights from invertebrates and cold-blooded vertebrates. Trends in Immunology, 2004. 25(2): p. 105-111.
69. Kennedy, R.B., et al., Current Challenges in Vaccinology. Front Immunol, 2020. 11: p. 1181.
70. Klemperer, F., Ueber natürliche Immunität und ihre Verwerthung für die Immunisirungstherapie. Archiv für experimentelle Pathologie und Pharmakologie, 1893. 31(4): p. 356-382.
71. Knight, K.L. and M.A. Crane, Generating the Antibody Repertoire in Rabbit, in Advances in Immunology, F.J. Dixon, Editor. 1994, Academic Press. p. 179-218.
72. Ko, K.H., et al., Changes in bursal B cells in chicken during embryonic development and early life after hatching. Scientific Reports, 2018. 8(1): p. 16905.
73. Lan, J., et al., Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. nature, 2020. 581(7807): p. 215-220.
74. Larsson, A. and J. Sjöquist, Chicken IgY: Utilizing the evolutionary difference. Comparative Immunology, Microbiology and Infectious Diseases, 1990. 13(4): p. 199-201.
75. Lee, L., et al., Immunoglobulin Y for potential diagnostic and therapeutic applications in infectious diseases. Frontiers in Immunology, 2021. 12: p. 696003.
76. Lee, W., et al., Insights into the chicken IgY with emphasis on the generation and applications of chicken recombinant monoclonal antibodies. Journal of immunological methods, 2017. 447: p. 71-85.
77. Leiva, C.L., et al., IgY-technology (egg yolk antibodies) in human medicine: A review of patents and clinical trials. International immunopharmacology, 2020. 81: p. 106269.
78. Leslie, G.A. and L.W. Clem, PHYLOGENY OF IMMUNOGLOBULIN STRUCTURE AND FUNCTION: III. IMMUNOGLOBULINS OF THE CHICKEN. Journal of Experimental Medicine, 1969. 130(6): p. 1337-1352.
79. Letko, M., A. Marzi, and V. Munster, Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol, 2020. 5(4): p. 562-569.
80. Li, S. and R. Zandi, Biophysical Modeling of SARS-CoV-2 Assembly: Genome Condensation and Budding. Viruses, 2022. 14(10): p. 2089.
81. Li, Y.-H., et al., Detection of the nucleocapsid protein of severe acute respiratory syndrome coronavirus in serum: comparison with results of other viral markers. Journal of virological methods, 2005. 130(1-2): p. 45-50.
82. Liu, H. and K. May, Disulfide bond structures of IgG molecules: structural variations, chemical modifications and possible impacts to stability and biological function. MAbs, 2012. 4(1): p. 17-23.
83. Lu, Y., et al., Generation of Chicken IgY against SARS-COV-2 Spike Protein and Epitope Mapping. Journal of Immunology Research, 2020. 2020: p. 9465398.
84. Luo, H., et al., Carboxyl terminus of severe acute respiratory syndrome coronavirus nucleocapsid protein: self-association analysis and nucleic acid binding characterization. Biochemistry, 2006. 45(39): p. 11827-35.
85. Mashoof, S., et al., Expressed IgH μ and τ transcripts share diversity segment in ranched Thunnus orientalis. Developmental & Comparative Immunology, 2014. 43(1): p. 76-86.
86. McClure, R. and P. Massari, TLR-Dependent Human Mucosal Epithelial Cell Responses to Microbial Pathogens. Frontiers in Immunology, 2014. 5.
87. McLaren, R., et al., The use of caprylic acid for the extraction of the immunoglobulin fraction from egg yolk of chickens immunised with ovine α-lactalbumin. Journal of immunological methods, 1994. 177(1-2): p. 175-184.
88. Menni, C., et al., Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study. Lancet Infect Dis, 2021. 21(7): p. 939-949.
89. Millet, J.K. and G.R. Whittaker, Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology, 2018. 517: p. 3-8.
90. Mishra, A.K. and R.A. Mariuzza, Insights into the Structural Basis of Antibody Affinity Maturation from Next-Generation Sequencing. Front Immunol, 2018. 9: p. 117.
91. Morgan, P.M., et al., Extraction and Purification of IgY, in IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, X.-Y. Zhang, et al., Editors. 2021, Springer International Publishing: Cham. p. 135-160.
92. Morgan, P.M., Immune Response in Mammals and Chickens, in IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, X.-Y. Zhang, et al., Editors. 2021, Springer International Publishing: Cham. p. 31-47.
93. Muir, F., Commercial Chicken Production Manual. Poultry Science, 1990. 69: p. 1036.
94. Müller, S., et al., IgY antibodies in human nutrition for disease prevention. Nutrition Journal, 2015. 14(1): p. 109.
95. Murai, A., Maternal Transfer of Immunoglobulins into Egg Yolks of Birds. The Journal of Poultry Science, 2013. 50(3): p. 185-193.
96. Nambulli, S., et al., Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. Sci Adv, 2021. 7(22).
97. Nishio, S., H. Okumura, and T. Matsuda, Chapter Nine - Egg-Coat and Zona Pellucida Proteins of Chicken as a Typical Species of Aves, in Current Topics in Developmental Biology, E.S. Litscher and P.M. Wassarman, Editors. 2018, Academic Press. p. 307-329.
98. O’Donnell, K.L., et al., Zika virus-specific IgY results are therapeutic following a lethal zika virus challenge without inducing antibody-dependent enhancement. Viruses, 2019. 11(3): p. 301.
99. Ogando, N.S., et al., SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology. J Gen Virol, 2020. 101(9): p. 925-940.
100. Olivieri, D.N., S. Mirete-Bachiller, and F. Gambón-Deza, Insights into the evolution of IG genes in Amphibians and reptiles. Developmental & Comparative Immunology, 2021. 114: p. 103868.
101. Parkhurst, C.R. and G.J. Mountney, Anatomy and Structure of the Fowl, in Poultry Meat and Egg Production, C.R. Parkhurst and G.J. Mountney, Editors. 1988, Springer US: Boston, MA. p. 16-30.
102. Peng, T.Y., K.R. Lee, and W.Y. Tarn, Phosphorylation of the arginine/serine dipeptide-rich motif of the severe acute respiratory syndrome coronavirus nucleocapsid protein modulates its multimerization, translation inhibitory activity and cellular localization. Febs j, 2008. 275(16): p. 4152-63.
103. Pereira, E., et al., Egg yolk antibodies (IgY) and their applications in human and veterinary health: A review. International immunopharmacology, 2019. 73: p. 293-303.
104. Pereira, M.M., et al., Single-step purification of ovalbumin from egg white using aqueous biphasic systems. Process Biochemistry, 2016. 51(6): p. 781-791.
105. Polson, A., M.B. von Wechmar, and M. Van Regenmortel, Isolation of viral IgY antibodies from yolks of immunized hens. Immunological communications, 1980. 9(5): p. 475-493.
106. Ratcliffe, M.J.H. and S. Härtle, Chapter 4 - B Cells, the Bursa of Fabricius and the Generation of Antibody Repertoires, in Avian Immunology (Second Edition), K.A. Schat, B. Kaspers, and P. Kaiser, Editors. 2014, Academic Press: Boston. p. 65-89.
107. S.N, N., et al., SARS-CoV 2 spike protein S1 subunit as an ideal target for stable vaccines: A bioinformatic study. Materials Today: Proceedings, 2022. 49: p. 904-912.
108. Saelao, P., et al., Novel insights into the host immune response of chicken Harderian gland tissue during Newcastle disease virus infection and heat treatment. BMC Veterinary Research, 2018. 14(1): p. 280.
109. Salimian, J., et al., Evolution of Immunoglobulins in Vertebrates, in IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, X.-Y. Zhang, et al., Editors. 2021, Springer International Publishing: Cham. p. 49-58.
110. Saxena, A., et al., Membrane-based techniques for the separation and purification of proteins: An overview. Advances in Colloid and Interface Science, 2009. 145(1): p. 1-22.
111. Schade, R., et al., Chicken egg yolk antibodies (IgY-technology): a review of progress in production and use in research and human and veterinary medicine. Altern Lab Anim, 2005. 33(2): p. 129-54.
112. Schade, R., et al., The Production of Avian (Egg Yolk) Antibodies: IgY:The Report and Recommendations of ECVAM Workshop 211,2. Alternatives to Laboratory Animals, 1996. 24(6): p. 925-934.
113. Schilling, M.A., et al., Transcriptional Innate Immune Response of the Developing Chicken Embryo to Newcastle Disease Virus Infection. Frontiers in Genetics, 2018. 9.
114. Schroeder, H.W. and L. Cavacini, Structure and function of immunoglobulins. Journal of Allergy and Clinical Immunology, 2010. 125(2, Supplement 2): p. S41-S52.
115. Scopes, R.K., Protein purification: principles and practice. 1993: Springer Science & Business Media.
116. Sheng, L., et al., The impact of N-glycosylation on conformation and stability of immunoglobulin Y from egg yolk. International Journal of
117. Shi, R. and Y. Wang, Dual Ionic and Organic Nature of Ionic Liquids. Sci Rep, 2016. 6: p. 19644.
118. Shimizu, M., et al., Molecular stability of chicken and rabbit immunoglobulin G. Biosci Biotechnol Biochem, 1992. 56(2): p. 270-4.
119. Sia, S.F., et al., Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature, 2020. 583(7818): p. 834-838.
120. Silveira, F., et al., Inoculation of specific pathogen-free chickens with an infectious bursal disease virus of the ITA genotype (G6) leads to a high and persistent viral load in lymphoid tissues and to a delayed antiviral response. Veterinary Microbiology, 2019. 235: p. 136-142.
121. Smith, A.L. and T.W. Göbel, Chapter 6 - Avian T cells: Antigen Recognition and Lineages, in Avian Immunology (Third Edition), B. Kaspers, et al., Editors. 2022, Academic Press: Boston. p. 121-134.
122. Son, A.P., Isolation of IgY from the yolks of eggs by a chloroform polyethylene glycol procedure. Immunological investigations, 1990. 19(3): p. 253-258.
123. Sparrow, E., et al., Therapeutic antibodies for infectious diseases. Bull World Health Organ, 2017. 95(3): p. 235-237.
124. Spillner, E., et al., Avian IgY antibodies and their recombinant equivalents in research, diagnostics and therapy. Biologicals, 2012. 40(5): p. 313-22.
125. Staak, C., et al., Isolation of IgY from yolk. Chicken egg yolk antibodies, production and application: IgY-technology, 2001: p. 65-107.
126. Stadelman, W.J., D. Newkirk, and L. Newby, Egg science and technology. 2017: CRC Press.
127. Stålberg, J. and A. Larsson, Extraction of IgY from egg yolk using a novel aqueous two-phase system and comparison with other extraction methods. Ups J Med Sci, 2001. 106(2): p. 99-110.
128. Sun, Y., et al., The Immunoglobulins: New Insights, Implications, and Applications. Annual Review of Animal Biosciences, 2020. 8(1): p. 145-169.
129. Sunwoo, H.H. and N. Gujral, Chemical composition of eggs and egg products, in Handbook of food chemistry. 2015, Springer. p. 331-363.
130. Surjit, M., et al., The nucleocapsid protein of the SARS coronavirus is capable of self-association through a C-terminal 209 amino acid interaction domain. Biochem Biophys Res Commun, 2004. 317(4): p. 1030-6.
131. Svendsen Bollen, L., et al., Antibody production in rabbits and chickens immunized with human IgG A comparison of titre and avidity development in rabbit serum, chicken serum and egg yolk using three different adjuvants. Journal of Immunological Methods, 1996. 191(2): p. 113-120.
132. Takeda, K., T. Kaisho, and S. Akira, Toll-Like Receptors. Annual Review of Immunology, 2003. 21(1): p. 335-376.
133. Takeda, M., et al., Solution structure of the c-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method. J Mol Biol, 2008. 380(4): p. 608-22.
134. Tang, T., et al., Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res, 2020. 178: p. 104792.
135. Tang, T., et al., Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral research, 2020. 178: p. 104792.
136. Tang, Y.-W., et al., Laboratory diagnosis of COVID-19: current issues and challenges. Journal of clinical microbiology, 2020. 58(6): p. e00512-20.
137. Taylor, A.I., et al., The crystal structure of an avian IgY-Fc fragment reveals conservation with both mammalian IgG and IgE. Biochemistry, 2009. 48(3): p. 558-562.
138. Taylor, T.G. and J.H. Moore, Avian Medullary Bone. Nature, 1953. 172(4376): p. 504-505.
139. Ting, B.C.P., et al., Fractionation of egg proteins and peptides for nutraceutical applications, in Separation, extraction and concentration processes in the food, beverage and nutraceutical industries. 2013, Elsevier. p. 595-618.
140. Tong, Q., et al., Embryonic development and the physiological factors that coordinate hatching in domestic chickens. Poultry Science, 2013. 92(3): p. 620-628.
141. Tůmová, E., et al., Age related changes in laying pattern and egg weight of different laying hen genotypes. Animal Reproduction Science, 2017. 183: p. 21-26.
142. Ward, E.S. and R.J. Ober, Chapter 4 Multitasking by Exploitation of Intracellular Transport Functions: The Many Faces of FcRn, in Advances in Immunology. 2009, Academic Press. p. 77-115.
143. Waritani, T., et al., An ELISA protocol to improve the accuracy and reliability of serological antibody assays. MethodsX, 2017. 4: p. 153-165.
144. Watanabe, Y., et al., Site-specific glycan analysis of the SARS-CoV-2
145. Weissenhorn, W., et al., Structural basis for membrane fusion by enveloped viruses. Molecular membrane biology, 1999. 16(1): p. 3-9.
146. Weltzin, R. and T.P. Monath, Intranasal antibody prophylaxis for protection against viral disease. Clinical microbiology reviews, 1999. 12(3): p. 383-393.
147. West, A.P., A.B. Herr, and P.J. Bjorkman, The Chicken Yolk Sac IgY Receptor, a Functional Equivalent of the Mammalian MHC-Related Fc Receptor, Is a Phospholipase A2 Receptor Homolog. Immunity, 2004. 20(5): p. 601-610.
148. Williams, J., Serum proteins and the livetins of hen's-egg yolk. Biochemical Journal, 1962. 83(2): p. 346.
149. Woolley, J.A. and J. Landon, Comparison of antibody production to human interleukin-6 (IL-6) by sheep and chickens. Journal of Immunological Methods, 1995. 178(2): p. 253-265.
150. Wrapp, D., et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020. 367(6483): p. 1260-1263.
151. Wu, J.T., K. Leung, and G.M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The Lancet, 2020. 395(10225): p. 689-697.
152. Wu, R., S. Yakhkeshi, and X. Zhang, Scientometric analysis and perspective of IgY technology study. Poult Sci, 2022. 101(4): p. 101713.
153. Xia, S., et al., Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cellular & molecular immunology, 2020. 17(7): p. 765-767.
154. Xia, S., et al., Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol, 2020. 17(7): p. 765-767.
155. Yadgary, L., E.A. Wong, and Z. Uni, Temporal transcriptome analysis of the chicken embryo yolk sac. BMC Genomics, 2014. 15(1): p. 690.
156. Yakhkeshi, S., et al., Trends in industrialization and commercialization of IgY technology. Front Immunol, 2022. 13: p. 991931.
157. Yatim, K.M. and F.G. Lakkis, A brief journey through the immune system. Clinical journal of the American Society of Nephrology: CJASN, 2015. 10(7): p. 1274.
158. Yeh, C.T., et al., Immunoglobulin Y Specific for SARS-CoV-2 Spike Protein Subunits Effectively Neutralizes SARS-CoV-2 Infectivity and Ameliorates Disease Manifestations In Vivo. Biomedicines, 2022. 10(11).
159. Yoshimura, Y. and A. Barua, Female Reproductive System and Immunology. Adv Exp Med Biol, 2017. 1001: p. 33-57.
160. Zhang, X., et al., Chapter 17: IgY industries and markets. IgY-Technology: Production and Application of Egg Yolk Antibodies. Springer Science, Cham, Switzerland, 2021: p. 279-308.
161. Zhang, X., et al., SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance. Signal transduction and targeted therapy, 2021. 6(1): p. 430.
162. Zhang, X., P.M. Morgan, and R.S. Vieira-Pires, Perspectives on IgY Technology, in IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, X.-Y. Zhang, et al., Editors. 2021, Springer International Publishing: Cham. p. 309-311.
163. Zhang, X., R.S. Vieira-Pires, and L. Xu, Development of IgY Technology: A Historical Perspective, in IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, X.-Y. Zhang, et al., Editors. 2021, Springer International Publishing: Cham. p. 3-14.
164. Zhang, X., S. Ge, and P.M. Morgan, IgY Cell Receptors and Immunity Transfer, in IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, X.-Y. Zhang, et al., Editors. 2021, Springer International Publishing: Cham. p. 71-79.
165. Zhao, Y., et al., Ornithorhynchus anatinus (Platypus) Links the Evolution of Immunoglobulin Genes in Eutherian Mammals and Nonmammalian Tetrapods12. The Journal of Immunology, 2009. 183(5): p. 3285-3293.
166. Zhu, N., et al., A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med, 2020. 382(8): p. 727-733.
167. Zivkovic, A.M., et al., Effects of sample handling and storage on quantitative lipid analysis in human serum. Metabolomics, 2009. 5: p. 507-516.
168. 行政院農業委員會,實驗動物照護及使用指引。2018:行政院農業委員會。