研究生: |
黃福安 Huang, Fu-An |
---|---|
論文名稱: |
應用於智慧型手機之改良式以Kinect為主的空中手寫數字辨識 An Improved Kinect-based Mid-air Handwritten Digit Recognition for Android Smart Phones |
指導教授: |
蘇崇彥
Su, Chung-Yen |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | Kinect 、Android智慧型手機 、人機互動 、手寫數字辨識 |
英文關鍵詞: | Kinect, Android, handwritten digit recognition, human-computer interaction |
論文種類: | 學術論文 |
相關次數: | 點閱:227 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來人機互動研究變的非常熱門,特別是在教育、遊憩及醫療保健方面,在先前的研究當中,我們提出了一個應用於電視遙控器以Kinect為主的手寫數字辨識,然而當時的辨識率只有86.7%,這促使我們想要去改善它的辨識率,因此,在本論文中,我們提出一個多分段及縮放編碼技術,實驗結果證明,此方法可以提高辨識率至94.6%。
除此之外,我們還想擴充此系統的實用性,所以在本文中,我們還提出應用於智慧型手機之改良式以Kinect為主的空中手寫數字辨識,當使用者手上並不乾淨時,可利用此系統不用接觸手機即可撥出電話,這能有效解決生活上會遇到的問題。
Human-computer interaction has been much popular in recent years, especially in the field of entertainment and education. In our previous work, we presented a method of Kinect-based mid-air handwritten digit recognition for a potential application to TV remote controllers. Nevertheless, its recognition accuracy is only about 86.7%. In this thesis, we propose an improved method based on multiple segments and scaled coding. Experimental results show that the proposed method can elevate the accuracy up to 94.6%.
Furthermore, we also present two applications combined with our improved method on Android smart phones. This system can be applied to dial without touching the smart phone. This can be implemented in the kitchen or hospital when user's hands are unable to touch the screen.
[1] 人機互動參閱自維基百科全書 http://zh.wikipedia.org/wiki/%E4%BA%BA%E6%A9%9F%E4%BA%92%E5%8B%95
[2] Kinect參閱微軟官網-Kinect 應用程式開發入門 http://msdn.microsoft.com/zh-tw/hh367958.aspx
[3] Wii參閱自維基百科全書http://zh.wikipedia.org/wiki/Wii
[4] Donald A. Norman 著、卓耀宗 譯,The design of everyday things 設計&日常生活,遠流出版事業股份有限公司,2007/02.
[5] Kinect conductor參閱自Youtube https://www.youtube.com/watch?v=uABuEIU-aNE
[6] T. T. Chu, and C.Y. Su, “A Kinect-based Handwritten Digit Recognition for TV Remote Controller,” in the Proc. IEEE International Symposium on Intelligent Signal Processing and Communication Systems, pp. 414- 419, 2012.
[7] Socket參閱自國立中山大學程式諮詢網https://sites.google.com/a/mis.nsysu.edu.tw/cheng-shi-zi-xun-wang/java-jin-jie-pian/wang-lu-pian/1-shen-me-shisocket
[8] 林宗勳,Support Vector Machines 簡介,http://www.cmlab.csie.ntu.edu.tw/~cyy/learning/tutorials/SVM2.pdf
[9] Weka參閱自台灣Wiki http://www.twwiki.com/wiki/WEKA
[10] T.T. Thanh, F. Chen, K. Kotani, and H.B. Le, “Extraction of Discriminative Patterns from Skeleton Sequences for Human Action Recognition,” in the Proc. IEEE RIVF International Conference on Computing and Communication Technologies, Research, Innovation, and Vision for the Future, pp.1-6, 2012.
[11] L. Xia, C.C. Chen, and J.K. Aggarwal, “Human detection using depth information by Kinect,” in the Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 15-22, 2011.
[12] J. Stowers, M. Hayes, A. Bainbridge-Smith, “Altitude control of a quadrotor helicopter using depth map from Microsoft Kinect sensor,” in the Proc. IEEE International Conference on Mechatronics, pp. 358-362, 2011.
[13] V. Frati, and D. Prattichizzo, “Using Kinect for hand tracking and rendering in wearable haptics,” in the Proc. IEEE World Haptics Conference, pp. 317- 321, 2011.
[14] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake, “Real-time human pose recognition in parts from single depth images,” in the Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1297- 1304, 2011.
[15] 黃識夫(王文俊教授指導),“應用Kinect之人體多姿態辨識”,國立中央大學電機工程研究所碩士論文,2011年7月.
[16] J. Bobeth, S. Schmehl, E. Kruijff, S. Deutsch, and M. Tscheligi, “Evaluating performance and acceptance of older adults using freehand gestures for TV menu control,” Proceedings of the 10th European conference on Interactive tv and video, pp.35-44, 2012.
[17] N. Kawarazaki, and A.I.B. Diaz, “Gesture recognition system for wheelchair control using a depth sensor,” in the Proc. IEEE Symposium on Computational Intelligence in Rehabilitation and Assistive Technologies, pp. 48- 53, 2013.
[18] F. Soltani, F. Eskandari, and S. Golestan, “Developing a Gesture-Based Game for Deaf/Mute People Using Microsoft Kinect,” in the Proc. IEEE International Conference on Complex, Intelligent and Software Intensive Systems, pp. 491-495, 2012.
[19] L.C. Ebert, G. Hatch, M.J. Thali, and S. Ross, “Invisible touch—Control of a DICOM viewer with finger gestures using the Kinect depth camera,” Journal of Forensic Radiology and Imaging, pp. 10- 14, 2013.
[20] L. Gallo, A.P. Placitelli, M. Ciampi, “Controller-free exploration of medical image data: Experiencing the Kinect,” in the Proc. IEEE International Symposium on Computer-Based Medical Systems, pp. 1-6, 2011.
[21] C.J. Lin. [Online].Available: http://www.csie.ntu.edu.tw/~cjlin/
[22] K最相鄰分類法介紹 http://mirlab.org/jang/books/dcpr/prKnnc.asp?title=5-2%20K-nearest-neighbor%20Classifiers&language=chinese
[23] Light Coding技術介紹 http://www.techbang.com/posts/2936-get-to-know-how-it-works-kinect