簡易檢索 / 詳目顯示

研究生: 童元甫
Tong, Yuan-Fu
論文名稱: 多通道陣列式磁粒子造影系統開發與特性 研究應用於生物影像
The Development and Application of Multichannel Array Magnetic Particle Imaging System for Biomagnetic Imaging
指導教授: 廖書賢
Liao, Shu-Hsien
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 99
中文關鍵詞: 多通道磁流體醫療影像磁粒子造影
英文關鍵詞: Biomedical Imaging
DOI URL: http://doi.org/10.6345/THE.NTNU.EPST.008.2018.E08
論文種類: 學術論文
相關次數: 點閱:202下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,架設多通道陣列式磁粒子造影系統 (MagneticParticleImaging,MPI),透過使用梯度線圈作為擷取線 圈,能夠快速動態成像,具有極低之系統背景值,在交流磁 場下,量測磁性奈米粒子之訊號,應用最小範數估計演算法 及非負線性最小平方演算法重建影像分佈。系統所量測最 小樣品含鐵量為 0.691675 mg,系統最大可量測區域為直徑 15 cm,建立移動樣品方法,架設自動控制移動平台,使本 系統有最佳影像解析度為 10 mm,開發局限座標法,進行 影像分析,使影像更加貼近於實際樣品,實現磁粒子造影的 功能性影像與磁振造影的結構性影像之整合的醫學影像。

    In this work we propose a magnetic particle imaging (MPI) by using an array of gradient pick-up coils for fast dynamic imaging and sensitive quantifying magnetic nano-particles (MNPs). We detect the magnetic signal from MNPs under an ac exciting field and apply the minimum-norm estimation to reconstruct MNPs' distribution. A detection sensitivity of 0.691675mg Fe content is achieved and a fast dynamic imaging with the imaging area of 15 × 15 cm2 is demonstrated. We combine the image of MPI with the image of MRI to locate the exact position of subjects and the distribution of MNPs. The proposed array MPI shows high detection sensitivity and fast dynamic imaging, and is promise in biomedical applications.

    誌謝 I 摘要 III Abstract IV 目錄 V 表目錄 VI 圖目錄 VII 第1章 緒論 1 1.1 研究動機 1 1.2 磁粒子造影系統概述 2 第2章 實驗原理 4 2.1 磁性流體樣品之特性 4 2.2 系統訊號 7 2.3 重建影像演算法 14 第3章 實驗架構與方法 19 3.1 系統架構 19 3.2 接收線圈平衡與校正訊雜比 24 3.3 前置訊號放大器電路 26 3.3 移動樣品法 29 3.4 數據分析方法 36 第4章 實驗結果與討論 37 4.1 實驗系統調校 37 4.2 靜態影像 48 4.3 動態影像 71 4.4 生物影像 79 第5章 結論 96 參考資料 97

    [1]楊謝樂,「磁性奈米粒子於生物醫學上之應用」,物理雙月 刊,第二十八卷,第四期,2006。
    [2]楊謝樂,「高靈敏度磁減量生醫檢測原理及應用」,台灣磁 性技術協會會訊,第51期,2010。
    [3]Gleich, B. and R. Weizenecker, Tomographic imaging using the nonlinear response of magnetic particles. Nature, 2005. 435(7046): p. 1214-1217.
    [4]Shu-Hsien Liao, Determining the time-dependent effective relaxation time of biofunctionalized magnetic nanoparticles conjugated with biotargets by using a high-Tc SQUID-based ac susceptometer for a magnetic immunoassay。Sensors and Actuators B: Chemical,238。
    [5] Lin, F.H., et al., Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. Neuroimage, 2006. 31(1): p. 160-171.
    [6]Hauk, O., Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data. Neuroimage, 2004. 21(4): p. 1612-1621.
    [7]Wang, J.Z., S.J. Williamson, and L. Kaufman, MAGNETIC SOURCE IMAGES DETERMINED BY A LEAD-FIELD ANALYSIS - THE UNIQUE MINIMUM-NORM LEAST-SQUARES ESTIMATION. Ieee Transactions on Biomedical Engineering, 1992. 39(7): p. 665-675.
    [8]S. Foner, digital Encyclopedia of Applied Physics, MEASUREMENT OF MAGNETIC PROPERTIES AND QUANTITIES”, WILEY-VCH Verlag GmbH & Co KGaA,
    [9]張浩瑜(2006)。《圖控運動平台設計與應用》交通大學運輸與物流管理學系碩士論文,新竹。
    [10]蔡牧修(2016)。《大面積可調式多通道磁粒子造影系統架設與特性研究》。國立台灣師範大學光電科技研究所碩士論文,未出版,台北。
    [11]Goodwill, P. W., Scott, G. C., Stang, P. P., & Conolly, S. M. (2009). “Narrowband magnetic particle imaging.” Medical Imaging, IEEE Transactions on, 28(8), 1231-1237.
    [12]Goodwill, Patrick W., and Steven M. Conolly. "The x-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation." Medical Imaging, IEEE Transactions on 29.11 (2010): 1851-1859.
    [13]Goodwill, P. W., Tamrazian, A., Croft, L. R., Lu, C. D., Johnson, E. M., Pidaparthi, R., ... & Conolly, S. M. (2011). “Ferrohydrodynamic relaxometry for magnetic particle imaging.” Applied Physics Letters, 98(26), 262502-262502.
    [13]Goodwill, P. W., & Conolly, S. M. (2011). “Multidimensional x-space magnetic particle imaging.” Medical Imaging, IEEE Transactions on, 30(9), 1581-1590.
    [14]Goodwill, Patrick W., et al. "An x-space magnetic particle imaging scanner." Review of Scientific Instruments 83.3 (2012): 033708- 033708.
    [15]Knopp, T., Sattel, T. F., Biederer, S., Rahmer, J., Weizenecker, J., Gleich, B., ... & Buzug, T. M. (2010). “Model-based reconstruction for magnetic particle imaging.” Medical Imaging, IEEE Transactions on, 29(1), 12-18.
    [17]Knopp, T., Biederer, S., Sattel, T. F., Rahmer, J., Weizenecker, J., Gleich, B., ... & Buzug, T. M. (2010). “2D model-based reconstruction for magnetic particle imaging.” Medical physics, 37, 485.
    [18]Rahmer, J., Weizenecker, J., Gleich, B., & Borgert, J. (2009). Signal encoding in magnetic particle imaging: properties of the system function. BMC medical imaging, 9(1), 4.
    [19]Gleich, B., Weizenecker, J., & Borget, J.(2008). “Experimental results on fast 2D-encoded magnetic particle Imaging.” Physics in medicine and biology, 53(6), N81.
    [20]Bulte, J. W., Walczak, P., Gleich, B., Weizenecker, J., Markov, D. E., Aerts, H. C., ...& Kuhn, M. (2011, March). “MPI cell tracking: what can we learn from MRI?”. In SPIE Medicine Imaging (pp. 79650Z- 79650Z). International Society for Optics and Photonics.

    無法下載圖示 本全文未授權公開
    QR CODE