簡易檢索 / 詳目顯示

研究生: 黃冠樺
Huang, Kuan-Hua
論文名稱: 基於雨嵌入一致性和注意力機制之單張影像去雨
Single Image Deraining Using Rain Embedding Consistency and Attention Mechanism
指導教授: 康立威
Kang, Li-Wei
口試委員: 李曉祺
Li, Hsiao-Chi
許志仲
Hsu, Chih-Chung
康立威
Kang, Li-Wei
口試日期: 2023/07/26
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 43
中文關鍵詞: 影像去雨編碼器解碼器注意力機制
英文關鍵詞: Image deraining, Encoder-Decoder, Attention mechanism
研究方法: 實驗設計法比較研究
DOI URL: http://doi.org/10.6345/NTNU202301097
論文種類: 學術論文
相關次數: 點閱:113下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於數位媒體的快速發展,影像處理的技術越來越受到人們的重視。不過由於影像資料之來源非常廣泛且品質難以控制,往往會有不同種因素的干擾,包括障礙物、光源、天氣等等,造成影像品質過低,可能會使其相關應用之效能大打折扣,甚至毫無用途。因此,為了解決這些難題,人們投入數位影像品質回復或強化的研究,在近些年來取得明顯的提高影像判讀性及可視性,還能幫助提高物件偵測的準確率。而在我們日常生活中,下雨是最常出現的情況,造成不管是拍攝影像或影片,都會因為雨水而造成影像不清晰。在目前現有的研究方法裡,有使用深度學習、多尺度、Transformer模型等影像去雨方法。其中在使用編碼器解碼器的去雨方式裡,通常是根據輸入的有雨影像來預測雨層。因此,編碼器解碼器的網路架構引起了廣泛的關注。但由於在編碼器階段需要提取影像裡有雨的特徵,而在提取的效果及精確度就很重要。為了解決這個問題,許多論文會加上各種模塊來提升提取的效果。

    為了解決上述問題,本篇論文提出一個編碼器解碼器網路架構, 並且加上注意力模塊,使其在編碼器階段可以提取更多更準確的有雨特徵,且在編碼器解碼器裡常用的跳躍連接也改成注意力機制的模塊,以讓編碼器提取的特徵可以加強傳遞,使得解碼器可以更為準確預測雨層。在實驗階段,我們使用了多個知名影像資料集,包括Rain100H、Rain100L以及Rain800來訓練及測試所提出的網路架構效果。

    Because of the rapid development of digital media, people pay more and more attention to image processing technology. However, due to the wide range of sources of image data and the quality is difficult to control, there are often interferences from various factors, including obstacles, light sources, weather, etc., resulting in low image quality, which may greatly reduce the performance of related applications, or even Useless. Therefore, in order to solve these problems, people have invested in the research of digital image quality restoration or enhancement, which has significantly improved image interpretation and visibility in recent years, and can also help improve the accuracy of object detection. In our daily life, rain is the most common occurrence, and whether it is shooting images or videos, the images will be unclear due to rain. Among the existing research methods, there are image deraining methods using deep learning, multi-scale, and Transformer models. Among them, in the rain removal method using an encoder-decoder, the rain layer is usually predicted based on the input rainy image. Therefore, the network architecture of encoder-decoder has attracted extensive attention. However, since the feature of rain in the image needs to be extracted in the encoder stage, the effect and accuracy of the extraction are very important. In order to solve this problem, many papers will add various modules to improve the extraction effect.

    In order to solve the above problems, this paper proposes an encoder-decoder network architecture, and adds an attention module, so that it can extract more and more accurate rainy features in the encoder stage, and is commonly used in encoder-decoder The skip connection is also changed to an attention mechanism module, so that the features extracted by the encoder can be strengthened, so that the decoder can predict the rain layer more accurately. In the experimental phase, we used several well-known image datasets, including Rain100H, Rain100L and Rain800, to train and test the effect of the proposed network architecture.

    謝 辭 i 中文摘要 ii Abstract iii 目  錄 v 圖 目 錄 vii 表 目 錄 ix 第一章 緒論 1 1.1研究動機與背景 1 1.2研究目的與方法概述 2 1.3論文架構 2 第二章 文獻探討 3 2.1 基於傳統影像去雨相關方法 3 2.1.1 稀疏編碼和字典學習 4 2.1.2 低秩矩陣法 4 2.1.3 基於梯度先驗的相關方法 5 2.2 基於深度學習影像去雨相關方法 5 2.3 使用殘差學習相關方法 8 2.4 Transformer相關方法 10 2.5 使用多尺度相關方法 14 2.5 使用編碼器解碼器相關方法 15 第三章 研究方法 18 3.1 自動編碼器 18 3.2 去雨網路主架構 20 3.3 網路訓練目標及損失函數 24 第四章 實驗結果分析 26 4.1 軟硬體架構 26 4.1.1訓練細節 27 4.1.2資料集 27 4.2 影像去雨結果 29 4.3 消融測試 35 4.4 測試時間及模型大小 36 第五章 結論與未來展望 38 參考文獻 39 自  傳 42 學術成就 43

    [1] L. W. Kang, C. W. Lin, and Y. H. Fu. Automatic singleimage-based rain streaks removal via image decomposition. IEEE Transactions on Image Processing, 21(4):1742–1755, 2012..
    [2] J. M. Fadili, J. L. Starck, J. Bobin, and Y. Moudden, “Image decomposition and separation using sparse representations: an overview,” Proc. IEEE, vol. 98, no. 6, pp. 983–994, June 2010.
    [3] J. M. Fadili, J. L. Starck, M. Elad, and D. L. Donoho, “MCALab: reproducible research in signal and image decomposition and inpainting,” IEEE Computing in Science & Engineering, vol. 12, no. 1, pp. 44–63, 2010.
    [4] J. Bobin, J. L. Starck, J. M. Fadili, Y. Moudden, and D. L. Donoho, “Morphological component analysis: an adaptive thresholding strategy,” IEEE Trans. Image Process., vol. 16, no. 11, pp. 2675–2681, Nov. 2007.
    [5] G. Peyré, J. Fadili, and J. L. Starck, “Learning adapted dictionaries for geometry and texture separation,” in Proc. SPIE, vol. 6701, 2007.
    [6] J. L. Starck, M. Elad, and D. L. Donoho, “Image decomposition via the combination of sparse representations and a variational approach,” IEEE Trans. Image Process., vol. 14, no. 10, pp. 1570–1582, Oct. 2005.
    [7] Y. L. Chen and C. T. Hsu. A generalized low-rank appearance model for spatio-temporally correlated rain streaks. In Proceedings of the IEEE International Conference on Computer Vision, pages 1968–1975, 2013.
    [8] L. Zhu, C.-W. Fu, D. Lischinski, and P.-A. Heng. Joint bilayer optimization for single-image rain streak removal. In Proceedings of the IEEE International Conference on Computer Vision, pages 2526–2534, 2017.
    [9] W. Yang, R. T. Tan, J. Feng, J. Liu, Z. Guo, and S. Yan. Deep joint rain detection and removal from a single image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1357–1366, 2017.
    [10] X. Fu, J. Huang, X. Ding, Y. Liao, and J. Paisley. Clearing the skies: A deep network architecture for single-image rain removal. IEEE Transactions on Image Processing, 26(6):2944–2956, 2017.
    [11] X. Li, J. Wu, Z. Lin, H. Liu, and H. Zha. Recurrent squeezeand-excitation context aggregation net for single image deraining. In European Conference on Computer Vision, pages 262–277, 2018.
    [12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.
    [13] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In International Conference on Learning Representations, May 2015.
    [14] X. Fu, J. Huang, D. Zeng, Y. Huang, X. Ding, and J. Paisley. Removing rain from single images via a deep detail network. In CVPR, 2017..
    [15] D. Ren, W. Zuo, Q. Hu, P. Zhu, and D. Meng. Progressive image deraining networks: a better and simpler baseline. In IEEE Conference on CVPR, pages 3937–3946, 2019.
    [16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. In NeurIPS, 2017.
    [17] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In Advances in neural information processing systems, pages 3104–3112, 2014.
    [18] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2021.
    [19] H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu, C. Xu, and W. Gao. Pre-trained image processing transformer. In IEEE Conference on Computer Vision and Pattern Recognition, pages 12299–12310, 2021..
    [20] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, and M. H. Yang. Restormer: Efficient transformer for high-resolution image restoration. In CVPR, 2022.
    [21] Z. Wang, X. Cun, J. Bao, and J. Liu. Uformer: A general u-shaped transformer for image restoration. arXiv preprint arXiv:2106.03106, 2021.
    [22] O. Ronneberger, P.Fischer, and T. Brox. U-Net: Convolutional networks for biomedical image segmentation. In MICCAI, 2015.
    [23] K. Jiang, Z. Wang, P. Yi, B. Huang, Y. Luo, J. Ma, and J. Jiang. Multi-scale progressive fusion network for single image deraining. In CVPR, 2020.
    [24] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang, and L. Shao. Multi-stage progressive image restoration. In IEEE Conf. Comput. Vis. Pattern Recog., pages 14821–14831, 2021.
    [25] Y. Li, Y. Monno, and M. Okutomi, “Single image deraining network with rain embedding consistency and layered LSTM,” in Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis., 2022, pp. 3957–3966.
    [26] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu. Image super-resolution using very deep residual channel attention networks. In ECCV, 2018.
    [27] T. Wang, X. Yang, K. Xu, S. Chen, Q. Zhang, and R. WH Lau. Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset. In CVPR, 2019.
    [28] Z. Wang, A. C Bovik, H. R Sheikh, and E. P Simoncelli. Image Quality Assessment:From Error Visibility to Structural Similarity. TIP, 13(4):600–612, 2004.
    [29] H. Wang, Q. Xie, Q. Zhao, and D. Meng. A modeldriven deep neural network for single image rain removal. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 3103–3112, 2020.
    [30] W. Yang, R. T Tan, J. Feng, J. Liu, Z. Guo, and S. Yan. Deep joint rain detection and removal from a single image. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 1357–1366, 2017.
    [31] H. Zhang, V. Sindagi, and V. M Patel. Image de-raining using a conditional generative adversarial network. IEEE Trans. on Circuits and Systems for Video Technology, 30(11):3943–3956, 2019.
    [32] W. Wei, D. Meng, Q. Zhao, Z. Xu, and Y. Wu. Semi-supervised transfer learning for image rain removal. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 3877–3886, 2019.
    [33] D. Ren, W. Shang, P. Zhu, Q. Hu, D. Meng, and W. Zuo. Single image deraining using bilateral recurrent network. IEEE Trans. on Image Processing, 29:6852–6863, 2020.
    [34] G. Li, X. He, W. Zhang, H. Chang, L. Dong, and L. Lin. Non-locally enhanced encoder-decoder network for single image de-raining. In ACM International Conference on Multimedia, pages 1056–1064, 2018.
    [35] L.Chen, X.Lu, J.Zhang, X.Chu, and C.Chen. Hinet: Half instance normalization network for image restoration. In CVPRW, pages 182–192, 2021.

    下載圖示
    QR CODE