研究生: |
呂紹平 Lu, Shao-Ping |
---|---|
論文名稱: |
桃園草漯沙丘-沙灘地形互動之研究 The Morphological Study of Beach-dune Interaction in Caota, Taoyuan |
指導教授: |
林宗儀
Lin, Tsung-Yi |
口試委員: | 張政亮 沈淑敏 林宗儀 |
口試日期: | 2021/07/27 |
學位類別: |
碩士 Master |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 170 |
中文關鍵詞: | 沙灘-沙丘地形 、時間尺度 、沙丘崖 、濱線變遷 、人為設施 |
英文關鍵詞: | beach-dune morphology, time scale, dune scarps, shoreline change, artificial facilities |
研究方法: | 調查研究 |
DOI URL: | http://doi.org/10.6345/NTNU202101510 |
論文種類: | 學術論文 |
相關次數: | 點閱:71 下載:19 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
海岸沙丘與沙灘地形受到風、波浪與潮汐多種控制因子影響,沙灘與沙丘的沉積物系統依據風向、風速、波高與潮差會形塑不同的地形景觀。海岸沙丘與沙灘地形在不同觀測時間尺度下,因時距內平均的營力作用海岸沙丘與沙灘具有不同的地形變化特徵。本研究以草漯沙丘作為研究區,分別以短期及中期時間尺度探討草漯沙丘地形變化與控制因子的關係,短期聚焦在草漯沙丘的季節性變化,中期尺度則關注近20年的濱線與海岸沙丘變化。地形的季節性變化使用RTK-GPS測量2019年至2020年間的六座調查區的海岸沙丘與沙灘的地形高程,施測頻率為每4個月一次,分別代表冬季、春季與夏季的地形。近20年的地形變化使用2001年至2018年間的航空照片與衛星影像呈現濱線與海岸沙丘的變化。攔砂籬、風力發電機、風機維修道路與海堤等人為設施對草漯沙丘地形的影響亦為本研究探討之重點。
季節性的監測結果顯示六座調查區的地形變化有所差異,主要差異在沙丘前坡坡腳的恢復與沙丘崖的侵蝕的時間分布不太一樣,沙丘崖的侵蝕頻率與空間分布可能與乾砂寬度相關,乾砂寬度較窄的區域波浪容易到達沙丘坡腳。乾砂寬度與波浪作用相關,波浪入射角、沙灘地形、波高會影響沿岸波能的分布,在波浪的攻擊點波能較大,導致乾砂寬度較窄,影響後方前列沙丘砂源之供給。大體上沙丘崖形成的季節以春夏兩季為主,其中又以夏季最多,冬季的沙丘崖消失恢復為沙丘的前坡面。氣象與海象資料顯示夏季的平均示性波高雖然較低,但夏季颱風的暴潮與湧浪在灘面上的波浪溯升可能刮蝕坡腳形成沙丘崖;冬季的平均示性波高較高,但強勁的東北風將後灘的乾砂吹往坡腳堆積,且冬季的水位沒有受暴潮影響而上升,海水較無機會抵達前坡坡腳。在沙丘前坡人工設置的攔砂籬因為積砂,造成坡腳與後灘之間的坡度變陡,亦干擾前坡上的飛砂移動。
研究結果顯示近20年的濱線大致呈現後退,活動沙丘後緣則受到人工植林防風定砂的作用,大致穩定,整體活動沙丘的寬度縮減。風力發電機、風機維修道路與海堤會降低飛砂活動。沙丘上人為設施的設置位置需考慮地形與營力間的交互作用與沉積物動態,根據管理目的不同在適當的地形區實施相應的管理措施才能海岸沙丘帶的永續經營。前列沙丘上的攔砂籬方面,本研究建議後方較無人為設施的海岸沙丘段,可以嘗試將沙丘上的攔砂籬拆除,讓飛砂自由朝著內陸移動,讓整體的沙丘剖面形態與景觀恢復為較自然的樣貌。
Coastal dune and beach morphology is controlled by a variety of processes and impact factors, with wind, waves, and tides. The sediment system of beach and dune will shape different landscapes according to wind direction, wind speed, wave height and tide range. Coastal dunes and beach morphology have different morphological characteristics at different time scales of observation due to the effect of time-averaged processes. Caota dunes is the study area, and investigate the relationship between topographic changes and control factors of Caota dunes at different time scales, focusing on the seasonal changes of Caota dunes in the short term and the recent 20 years changes of shoreline and coastal dunes in the medium term. Seasonal changes in topography were measured using RTK-GPS for coastal dunes and beaches in the six survey areas between 2019 and 2020, at a frequency of once every four months, representing winter, spring, and summer morphology, respectively. The topographic changes over the last 20 years are presented using aerial photographs and satellite images of the shoreline and coastal dunes from 2001 to 2018. The effects of anthropogenic facilities such as sand fences, wind turbines, wind turbine maintenance roads, and seawalls on the topography of Caota dunes are also the focus of this study.
The seasonal monitoring results show that there are differences in topographic variation among the six survey areas, mainly in the recovery of dune stoss slopes and the erosion of dune scarps. Frequency and spatial distribution of the dune scarps may be related to the width of the dry sand, and the waves in the areas with narrower dry sand width can easily reach the dune foot. Dry sand width is related to wave action. The angles of incident wave, beach morphology, and wave height affect the distribution of wave energy along the shoreline, and a larger wave energy at the point of wave attack results in a narrower dry sand width, which affects the supply of sand to the foredunes behind. Generally, dune scarps are formed mainly in spring and summer, with summer being the most frequent season and dune scarps in winter disappearing and reverting to the foreslope of dunes. Meteorological and marine data show that the average significant wave height in summer is relatively low, but the storm surges of summer typhoons and swells run up on the beach may scrape and erode the dunefoot to form dune scarps; the average significant wave height in winter is relatively high, but the strong northeastern wind will blow the dry sand from the backshore to the dunefoot, and the water level in winter is not risen by storm surges, the seawater has no chance to reach the dunefoot of the foreslope. The artificial sand fences on the foreslope of the dune caused the steepening of the slope between the lower foreslope and the backshore due to sand accumulation, which also interfereed with the movement of sediments on the foreslope.
The results of the study show that the shoreline has generally receded over the past 20 years, while the landward edge of the active dunes is generally stable due to the effect of forestation in preventing wind and sand fixation. Wind turbines, wind turbine maintenance roads, and seawalls will reduce the area of active dunes and reduce potential sand transporting. The location of artificial facilities on the dunes requires consideration of the interaction between geomorphology and processes as well as sediment dynamics, and to implement appropriate management measures in appropriate morphological areas according to management goals in order to sustain the coastal dunes. The study suggests that the sand fences on the dunes should be removed in the back of the dunes where there are no artificial facilities, so that the sand can move inland and the dune profile and dune landscape can be more natural.
中文文獻
王千瑜(2015)。應用多期圖資探討臺灣二十世紀以來西北海岸地形與土地覆蓋變遷〔未出版之碩士論文〕。國立臺灣師範大學地理學系。
石再添、張瑞津、林雪美、張政亮、連偵欽(1992)。臺灣北部海岸沙丘之地形學研究。國立臺灣師範大學地理研究報告,18,193-240
何俊偉(2011)。應用多期行遙測圖資分析濱線變遷〔未出版之碩士論文〕。國立臺灣師範大學地理學系。
沈志修(編)(2017)。自然樂活海好有你:桃園海岸生態保護白皮書.2017。桃園市:桃園市政府。
沈淑敏、王千瑜、廖泫銘(2019)。臺灣歷史地圖與航照影像於判釋沙丘型海岸地形特徵之應用與限制。載於臺北市立大學歷史與地理學系(編),臺北市立大學史地學術曁鄧國雄教授紀念研討會論文集(頁1-20)。
林宗儀(2009)。臺灣海岸變遷監測分析(1/4)。經濟部中央地質調查所。
林宗儀(2011)。宜蘭海岸永續經營之沙丘劣化評估指標。地理研究,55,69-87。3
林宗儀、劉景毅、黃翔瑜(2011)。海岸人工復育現場試驗。第三十三屆海洋工程研討會論文集,459-464。
林柏青、衛紀淮、何良勝(2014)。102 年港域近岸底床輸沙之現場觀測研究(1/4)。臺北市:交通部運輸研究所。
林柏青、衛紀淮、何良勝(2017)。105 年港域近岸底床輸沙之現場觀測研究。臺北市:交通部運輸研究所。
林雪美、溫博文、錢樺(2010)。工業化海岸健診計畫--大園觀音工業化海岸診斷與復育先驅研究—總結成果報告書。桃園縣:桃園縣政府。
林朝棨(1957)。臺灣地形。臺灣省文獻委員會。
林雅谷(2004)。風沙與地形變動之試驗研究〔未出版之碩士論文〕。國立成功大學水利及海洋工程學系。
凃盛文、吳昭榮(1996)。海堤堤趾防止沖刷之試驗研究。中華民國第十八屆海洋工程研討會論文集,729-735。
洪佩鈺、沈淑敏、陳浦淮(2006)。應用大比例尺正射影像地圖辨識沙礫質海灘的濱線:以臺東海岸為例。地理研究,44,89-105。
禹安工程顧問股份有限公司(2018)。桃園海岸一般性海堤區域環境情勢調查。新竹市:水利署第二河川局。
張政亮(1992)。蘭陽平原海岸沙丘之地形學研究〔未出版之碩士論文〕。國立臺灣師範大學地理研究所。
張智原(2000)。臺灣西北部海岸變遷之研究∼淡水河口至新竹頭前溪口〔未出版之碩士論文〕。中國文化大學地學研究所。
莊永忠、林雪美、沈淑敏、廖學誠(2011)。桃園海岸林分發展與地形變遷之關聯性研究(1978~2004)。臺灣土地研究,14(1),69-89。
許民陽、張智原(2007)。臺灣西北海岸後退之研究淡水河口至頭前溪口段。中國地理學會會刊,38,1-22。
郭重言、林立青、藍文浩、莊文傑、李俊穎(2015)。臺灣四周海域長期性之海水面變化趨勢評估。臺北市:交通部運輸研究所。
陳彥樺(2007)。台北縣三芝鄉淺水灣西側海岸沙丘地形及植群分布關係之研究〔未出版之碩士論文〕。國立臺灣大學地理環境資源學研究所。
陳財輝、游漢明、洪富文(2004)。桃園許厝港海岸飛砂之移動及定砂植物之生長。中華林學季刊,37(4):367-377
游繁結(1979)。不同密度堆砂籬之功效探討。農林學報,28,169-216。
黃隆明、邱盈達、陳財輝(2012)。堆砂籬功效之探討。農林學報,62(2),121-145。
黃隆明、秦正宇、周廷韋(2015)。堆砂籬配置對堆砂功效之研究。農林學報,64(1),47-55。
楊美萍(2004)。桃園縣海岸沙丘地形變遷之研究〔未出版之碩士論文〕。國立臺灣大學地理環境資源研究所。
臺灣省水利局規劃總隊(1981)。沙丘地灌溉農業技術手冊,農發會水利特刊第3號,3-4。
蔡乙源、吳建賢(2017)。臺灣西北部海岸防風保安林營造策略。臺灣林業,43(1),21-27。
鄧書麟(2012)。與飛砂的拔河—飛砂防止保安林之經營策略。林業研究專訊,19(6),47-51。
鄭瑞壬、鄧國雄(1991)。桃園台地海岸沙丘型態與沙粒度分析。中國地理學會會刊,19,21-31。
鄭瑞壬(1991)。桃園臺地海岸沙丘及其土地利用之研究〔未出版之碩士論文〕。中國文化大學地學研究所。
羅毓芳(2008)。海岸沙丘易損性評估之研究—以新竹南港至苗栗竹南海岸為例〔未出版之碩士論文〕。中國文化大學地學研究所。
英文文獻
Aagaard, T., Davidson-Arnott, R., Greenwood, B., & Nielsen, J. (2004). Sediment supply from shoreface to dunes: linking sediment transport measurements and long-term morphological evolution. Geomorphology, 60(1–2), 205–224. https://doi.org/10.1016/j.geomorph.2003.08.002
Anderson, J. D., Jr. (2010). Fundamentals of Aerodynamics (5th ed.). McGraw-Hill Education.
Anthony, E. J., Vanhee, S., & Ruz, M. H. (2007). An assessment of the impact of experimental brushwood fences on foredune sand accumulation based on digital elelvation models. Ecological Engineering, 31(1), 41–46. https://doi.org/10.1016/j.ecoleng.2007.05.005
Armaroli, C., Grottoli, E., Harley, M. D., & Ciavola, P. (2013). Beach morphodynamics and types of foredune erosion generated by storms along the Emilia-Romagna coastline, Italy. Geomorphology, 199, 22–35. https://doi.org/10.1016/j.geomorph.2013.04.034
Boak, E. H., & Turner, I. L. (2005). Shoreline definition and detection: A review. Journal of Coastal Research, 214, 688–703. https://doi.org/10.2112/03-0071.1
Christiansen, M. B., & Davidson-Arnott, R. (2004). Rates of landward sand transport over the foredune at Skallingen, Denmark and the role of dune ramps. Geografisk Tidsskrift-Danish Journal of Geography, 104(1), 31–43. https://doi.org/10.1080/00167223.2004.10649502
Castelle, B., Marieu, V., Bujan, S., Splinter, K. D., Robinet, A., Sénéchal, N., & Ferreira, S. (2015). Impact of the winter 2013–2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments. Geomorphology, 238, 135–148. https://doi.org/10.1016/j.geomorph.2015.03.006
Cowell, P. J., & Thom, B. G. (1994) Morphodynamics of coastal evolution. In R. W. G. Carter & C. D. Woodroffe (Eds.), Coastal Evolution, Late Quaternary Shoreline Morphodynamics (pp. 33-86), Cambridge University Press.
Danchenkov, A., Belov, N., & Stont, Z. (2019). Using the terrestrial laser scanning technique for aeolian sediment transport assessment in the coastal zone in seasonal scale. Estuarine, Coastal and Shelf Science, 223, 105–114. https://doi.org/10.1016/j.ecss.2019.04.044
Darke, I. B., Walker, I. J., & Hesp, P. A. (2016). Beach-dune sediment budgets and dune morphodynamics following coastal dune restoration, Wickaninnish Dunes, Canada. Earth Surface Processes and Landforms, 41(10), 1370–1385. https://doi.org/10.1002/esp.3910
Davidson-Arnott, R. (2009). Introduction to Coastal Processes and Geomorphology (1st ed.). Cambridge University Press.
Davidson‐Arnott, R. & Law, M. N. (1990). Seasonal patterns and controls on sediment supply to coastal foredunes, Long Point, Lake Erie. In K. F. Nordstrom, N.P. Psuty, & R. W. G. Carter (Eds.), Coastal Dunes: Form and Process (pp. 177-200). John Wiley & Sons.
Davies, J. L., & Clayton, K. M. (1980). Geographical Variation in Coastal Development. Longman.
Davis, R. A., Jr, & Dalrymple, R. W. (2011). Principles of Tidal Sedimentology. Springer Publishing.
Delbaere, B. (2000). Facts and figures on Europe's biodiversity: State and trends 1998-1999. European Centre for Nature Conservation.
Doody, J. P. (2012). Sand Dune Conservation, Management and Restoration. Springer.
Fabbri, S., Giambastiani, B. M., Sistilli, F., Scarelli, F., & Gabbianelli, G. (2017). Geomorphological analysis and classification of foredune ridges based on Terrestrial Laser Scanning (TLS) technology. Geomorphology, 295, 436–451. https://doi.org/10.1016/j.geomorph.2017.08.003
Grilliot, M. J., Walker, I. J., & Bauer, B. O. (2018). Airflow Dynamics over a Beach and Foredune System with Large Woody Debris. Geosciences, 8(5), 147. https://doi.org/10.3390/geosciences8050147
Grilliot, M. J., Walker, I. J., & Bauer, B. O. (2019). The Role of Large Woody Debris in Beach‐Dune Interaction. Journal of Geophysical Research: Earth Surface, 124(12), 2854–2876. https://doi.org/10.1029/2019jf005120
Hanley, M., Hoggart, S., Simmonds, D., Bichot, A., Colangelo, M., Bozzeda, F., Heurtefeux, H., Ondiviela, B., Ostrowski, R., Recio, M., Trude, R., Zawadzka-Kahlau, E., & Thompson, R. (2014). Shifting sands? Coastal protection by sand banks, beaches and dunes. Coastal Engineering, 87, 136–146. https://doi.org/10.1016/j.coastaleng.2013.10.020
Héquette, A., Ruz, M. H., Zemmour, A., Marin, D., Cartier, A., & Sipka, V. (2019). Alongshore Variability in Coastal Dune Erosion and Post-Storm Recovery, Northern Coast of France. Journal of Coastal Research, SI 88, 25. https://doi.org/10.2112/si88-004.1
Hesp, P. (1981). The Formation of Shadow Dunes. SEPM Journal of Sedimentary Research, Vol. 51. https://doi.org/10.1306/212f7c1b-2b24-11d7-8648000102c1865d
Hesp, P. (1988). Morphology, dynamics and internal stratification of some established foredunes in southeast Australia. Sedimentary Geology, 55(1–2), 17–41. https://doi.org/10.1016/0037-0738(88)90088-7
Hesp, P. (2002). Foredunes and blowouts: initiation, geomorphology and dynamics. Geomorphology, 48(1–3), 245–268. https://doi.org/10.1016/s0169-555x(02)00184-8
Hesp, P. A., & Thom, B. G. (1990). Geomorphology and evolution of active transgressive dunefields. In K. F. Nordstrom, N.P. Psuty, & R. W. G. Carter (Eds.), Coastal Dunes: Form and Process (pp. 253-288). John Wiley & Sons.
Intergovernmental Panel on Climate Change. (2007). Climate Change 2007 - The Physical Science Basis. Cambridge University Press.
Itzkin, M., Moore, L. J., Ruggiero, P., & Hacker, S. D. (2020). The effect of sand fencing on the morphology of natural dune systems. Geomorphology, 352, 106995. https://doi.org/10.1016/j.geomorph.2019.106995
Łabuz, T. A. (2016). A review of field methods to survey coastal dunes—experience based on research from South Baltic coast. Journal of Coastal Conservation, 20(2), 175–190. https://doi.org/10.1007/s11852-016-0428-x
Lee, J. M., Park, J. Y., & Choi, J. Y. (2013). Evaluation of Sub-aerial Topographic Surveying Techniques Using Total Station and RTK-GPS for Applications in Macrotidal Sand Beach Environment. Journal of Coastal Research, 65, 535–540. https://doi.org/10.2112/si65-091.1
Li, B., & Sherman, D. J. (2015). Aerodynamics and morphodynamics of sand fences: Areview. Aeolian Research, 17, 33–48. https://doi.org/10.1016/j.aeolia.2014.11.005
Livingstone, I., & Warren, A. (1996). Aeolian Geomorphology: An Introduction (1st ed.). Longman Pub Group.
Masselink, Gerhard. & Short, Andrew. (1993). The Effect of Tide Range on Beach Morphodynamics and Morphology: A Conceptual Beach Model. Journal of Coastal Research, 9(3), 785-800. http://www.jstor.org/stable/429812
Miot da Silva, G., & Hesp, P. (2010). Coastline orientation, aeolian sediment transport and foredune and dunefield dynamics of Moçambique Beach, Southern Brazil. Geomorphology, 120(3–4), 258–278. https://doi.org/10.1016/j.geomorph.2010.03.039
Moloney, J. G., Hilton, M. J., Sirguey, P., & Simons-Smith, T. (2018). Coastal Dune Surveying Using a Low-Cost Remotely Piloted Aerial System (RPAS). Journal of Coastal Research, 345, 1244–1255. https://doi.org/10.2112/jcoastres-d-17-00076.1
Montreuil, A. L., Bullard, J. E., Chandler, J. H., & Millett, J. (2013). Decadal and seasonal development of embryo dunes on an accreting macrotidal beach: North Lincolnshire, UK. Earth Surface Processes and Landforms, 38(15), 1851–1868. https://doi.org/10.1002/esp.3432
Nordstrom, K. F., & Jackson, N. L. (2018). Constraints on restoring landforms and habitats on storm-damaged shorefront lots in New Jersey, USA. Ocean & Coastal Management, 155, 15–23. https://doi.org/10.1016/j.ocecoaman.2018.01.025
Nordstrom, K. F., Jackson, N. L., Freestone, A. L., Korotky, K. H., & Puleo, J. A. (2012). Effects of beach raking and sand fences on dune dimensions and morphology. Geomorphology, 179, 106–115. https://doi.org/10.1016/j.geomorph.2012.07.032
Ollerhead, J., Davidson-Arnott, R., Walker, I. J., & Mathew, S. (2012). Annual to decadal morphodynamics of the foredune system at Greenwich Dunes, Prince Edward Island, Canada. Earth Surface Processes and Landforms, 38(3), 284–298. https://doi.org/10.1002/esp.3327
Pardo-Pascual, J., García-Asenjo, L., Palomar-Vázquez, J., & Garrigues-Talens, P. (2005). New Methods and Tools to analyze beach-dune system evolution using a Real-Time Kinematic Global Positioning System and Geographic Information Systems. Journal of Coastal Research, SI 49, 34-39.
Pethick, J. (1983). An introduction of coastal geomorphology. Hodder Arnold Publication.
Pintó, J., Martí, C., & Fraguell, R. M. (2014). Assessing Current Conditions of Coastal Dune Systems of Mediterranean Developed Shores. Journal of Coastal Research, 30(4), 832. https://doi.org/10.2112/jcoastres-d-13-00116.1
Psuty, N. P. (1988). Sediment budget and dune/beach interaction. Journal of Coastal Research, SI 3, 1-4.
Rader, A. M., Pickart, A. J., Walker, I. J., Hesp, P. A., & Bauer, B. O. (2018). Foredune morphodynamics and sediment budgets at seasonal to decadal scales: Humboldt Bay National Wildlife Refuge, California, USA. Geomorphology, 318, 69–87. https://doi.org/10.1016/j.geomorph.2018.06.003
Reed, D. J., Davidson-Arnott, R. G. D. & Perillo, G. M. E. (2009). Estuaries, Coastal Marshes, Tidal Flats and Coastal Dunes. In Slaymaker, O. (Ed.), Landscape Changes in the 21st Century (pp. 130-157). Cambridge University Press.
Ruessink, B., Arens, S., Kuipers, M., & Donker, J. (2018). Coastal dune dynamics in response to excavated foredune notches. Aeolian Research, 31, 3–17. https://doi.org/10.1016/j.aeolia.2017.07.002
Short, A., & Hesp, P. (1982). Wave, beach and dune interactions in southeastern Australia. Marine Geology, 48(3–4), 259–284. https://doi.org/10.1016/0025-3227(82)90100-1
Stéphan, P., Blaise, E., Suanez, S., Fichaut, B., Autret, R., Floc’h, F., Cuq, V., Le Dantec, N., Ammann, J., David, L., Jaud, M., & Delacourt, C. (2019). Long, medium, and short-term shoreline dynamics of the Brittany Coast (Western France). Journal of Coastal Research, SI 88, 89-109.
Wiegel, R. L. (2013). Oceanographical Engineering. Dover Publications.
Wright, L., & Short, A. (1984). Morphodynamic variability of surf zones and beaches: A synthesis. Marine Geology, 56(1–4), 93–118. https://doi.org/10.1016/0025-3227(84)90008-2
網路資料
地質資料整合查詢,經濟部中央地質調查所,https://gis3.moeacgs.gov.tw/gwh/gsb97-1/sys8/t3/index1.cfm
氣象資料開放平台,中央氣象局,https://opendata.cwb.gov.tw/index
臺灣海象災防環境資訊平台,中央氣象局,https://safesee.cwb.gov.tw/V2/data_interface/datasets
觀測資料查詢,中央氣象局,https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp