研究生: |
錢丹 Qian, Dan |
---|---|
論文名稱: |
以擴展性科技接收模式探討消費者對於平台式餐廳APP使用意願之影響因素 Exploring the Antecedents of Using Integrated Restaurant APP through an Extended Technology Acceptance Model |
指導教授: |
方進義
Fang, Chin-Yi |
學位類別: |
碩士 Master |
系所名稱: |
運動休閒與餐旅管理研究所 Graduate Institute of Sport, Leisure and Hospitality Management |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | APP 、科技接受模式 、結構方程模式 、驗證性因素分析 、Amos 22.0 、使用意願 |
英文關鍵詞: | APP, Technology Acceptance Model, Structural Equation Model, Confirmatory Factor Analysis, Amos 22.0, Intention |
DOI URL: | https://doi.org/10.6345/NTNU202204461 |
論文種類: | 學術論文 |
相關次數: | 點閱:207 下載:24 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著行動通訊和無線網路越來越發達,消費者常利用手機及其他電子設備進行日常消費活動。餐旅業者也因此獲得一個以低成本高效率販售與推廣產品的機會。其中APP在其中充當工具的角色,可以為消費者與業者之間搭起溝通的橋樑。餐廳業者為此開始建立起整合各地美食資訊的APP,顧客可以透過APP進行消費以及資訊的搜尋。因此本研究針對評價分數四星以上的餐廳APP,以曾經使用過這些餐廳APP的顧客為研究樣本,根據文獻資料及探索性因素分析法提出10個假設,使用問卷調查法進行資料的收集,收回正式問卷335份,最終有效問卷數為318份,運用驗證性因素分析與結構方程式進行問卷結果分析,以擴展性科技接受模式探討消費者對於餐廳APP使用意願之影響因素。本研究結果顯示餐廳APP之「認知有用性」、「認知易用性」和消費者對於餐廳APP之「安全與隱私」認知對消費者使用餐廳APP的「態度」有正向顯著影響,「認知易用性」可以正向顯著影響「認知有用性」,且消費者對於餐廳APP的「認知有用性」和「態度」對其使用餐廳APP之「使用意願」有正向顯著影響,而餐廳APP的「自我效能感」與「規範信念」對於消費者使用餐廳APP的意願沒有顯著影響,「態度」為「認知有用性」與「使用意願」之中介且「認知有用性」為「認知易用性」與「態度」之中介。因此,本研究建議未來餐廳APP的設計應著重其「認知有用性」、「認知易用性」及「安全與隱私」等方面之加強,本研究之結果希望提供餐廳業者提高顧客使用餐廳APP意願之意見參考。
With the rapid development of mobile communication and wireless Internet, consumers increasingly use mobile and other electrical products. Thus,the restaurant managers have obtained a good chance to sell and promote their menu items with low cost and high profit. APP plays an important role, which put a bridge between consumers and managers.Thus, the integrated restaurant APPs have been developed for customers, so thatcustomerscan consume or seek information about restaurantthrough these APPs. Therefore, this studyinvestigatedthe antecedents of using integrated restaurant APP through an Extended Technology Acceptance Model. A total of 350 on-line questionnairs were obtained, 318valid questionnaires were used for data analysis finally. Confirmatory factor analysis and structural equation modeling are used to examing the antecedents of using integrated restaurant APPs. Theresults of this study shows that ‘perceived usefulness’, ‘perceived ease of use’ and‘security andprivacy’have positive impact on customer’s attitude, ‘perceived ease of use’have positive impact on ‘perceived usefulness’, besides, ‘perceived usefulness’ and ‘attitude’ both have positive impact on customer’s ‘intention’, while ‘self efficacy’ and ‘normative belifs’ have no impact on customer’s ‘intention’. The result shows that ‘attitude’ mediates the relationship between ‘perceived usefulness’ and ‘intention’, besides, ‘perceived usefulness’ mediates the relationship between ‘perceived ease of use’ and ‘intention’, Thus, this study suggests that ‘perceived usefulness’, ‘perceived ease of use’ and ‘security andprivacy’ should be strongly taken into account when designing the restaurant APP. The managerial implications and future research are also discussed.
台經院產經資料庫 (2015)。2011年至2015年7月我國餐飲業家數統計。取自http://tie.tier.org.tw/db/reference/data_source_content.asp?sid=0F274354874562774869&keyword=%c0%5c%b6%bc+%aea%bc%c6
行政院主計處 (2011)。2011 年 3 月第 9 次修訂之「中華民國行業標準分類」。取自http://www.dgbas.gov.tw/ct.asp?xItem=28854&ctNode=3111
何金銘 (2001)。統計法輯要。臺南:臺灣復文興業股份有限公司。
邱皓政 (2006)。量化研究與統計分析。臺北:五南圖書出版股份有限公司。
吳明隆、涂金堂 (2013)。SPSS 與統計應用分析。臺北:五南圖書出版股份有限公司。
林娟娟、蘇政泓 (2007)。以社群觀點研究線上遊戲使用者參與動機。電子商務研究,5(1) , 31-54。
張偉豪 (2011)。SEM 論文寫作不求人。臺北: 鼎茂圖書出版股份有限公司。
經濟部統計處 (2015)。2011年至2015年3月我國餐飲業營業額統計趨勢一覽。取自http://tie.tier.org.tw/db/reference/data_source_content.asp?sid=0F149410974517018814&keyword=%c0%5c%b6%bc%b7%7e%c0%e7%b7%7e%c3B
財團法人資訊工業策進會創新應用服務研究所FIND (Foreseeing Innovation New Digiservices) (2014)。2014臺灣消費者行動裝置暨APP使用行為研究調查報告。取自http://www.iii.org.tw/m/News-more.aspx?id=1475
Google play (2016). 餐廳APP. 取自:https://play.google.com/store/search?q=%E9%A4%90%E5%BB%B3APP&c=apps
Agarwal, R., & Prasad, J. (1999). Are individual differences germane to the acceptance of new information technologies? Decision Sciences, 30(2), 361-391.
Ajzen, I. (1989). Attitude structure and behavior.
Hillsdale, NJ: Lawrence Erlbaum Associates.
Ajzen, I. (1985). From intentions to actions: A theory of planned behavior (pp. 11-39). Heidelberg, DE: Springer Berlin.
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behaviour. London, UK: pearson college division publisher.
Aldridge, A., White, M., & Forcht, K. (1997). Security considerations of doing business via the Internet: cautions to be considered. Internet Research, 7(1), 9-15.
Amin, H., & Ramayah, T. (2010). SMS banking: Explaining the effects of attitude, social norms and perceived security and privacy. Electronic Journal on Information Systems in Developing Countries, 41(2), 1-15.
Armitage, C. J., & Conner, M. (2001). Efficacy of the theory of planned behaviour: A meta‐analytic review.
British Journal of Social Psychology, 40(4), 471-499.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94.
Bagozzi, R. P. (1982). A field investigation of causal relations among cognitions, affect, intentions, and behavior. Journal of Marketing Research, 19(4), 562.
Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37(2), 122.
Bandura, A. (1977). Social Learning Theory, Englewood Cliffs, NJ: Prentice Hall.
Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173.
Bellman, S., Lohse, G. L., & Johnson, E. J. (1999). Predictors of online buying behavior. Communications of the Association for ComputingMachinery, 42(12), 32-38.
Bhatnagar, A., Misra, S., & Rao, H. R. (2000). On risk, convenience, and Internet shopping behavior. Communications of the Association for ComputingMachinery, 43(11), 98-105.
Bhattacherjee, A. (2000). Acceptance of E-Commerce Services: The Case of Electronic Brokerages. IEEE Transactions On Systems, Man, and Cybernetics-Part A: Systems and Humans, 30(4), 411.
Brinberg, D. (1979). An examination of the determinants of intention and behavior: A comparison of two models. Journal of Applied Social Psychology,9(6), 560-575.
Brown, T. (2006). CFA with equality constraints, multiple groups, and mean structures. New York, NY: Guildford Press.
Buhalis, D., & Yovcheva, Z. (2014, January). Augmented Reality in Tourism: 10 Unique Applications Explained. Proceedings of the International Conference in Dublin, Ireland.
Casalo, L. V., Flavián, C., & Guinalíu, M. (2007). The role of security, privacy, usability and reputation in the development of online banking. Online Information Review, 31(5), 583-603.
Chen, L. D., Gillenson, M. L., & Sherrell, D. L. (2002). Enticing online consumers: an extended technology acceptance perspective. Information & Management, 39(8), 705-719.
Cheung, C. M. K., Chan, G. W., & Limayem, M. (2005). A critical review of online consumer behavior: Empirical research. Journal of Electronic Commerce in Organizations, 3(4), 1-19.
Chiu, C. M., Chang, C. C., Cheng, H. L., & Fang, Y. H. (2009). Determinants of customer repurchase intention in online shopping. Online Information Review,33(4), 761-784.
Compeau, D., Higgins, C. A., & Huff, S. (1999). Social cognitive theory and individual reactions to computing technology: A longitudinal study. Management Information System Quarterly, 23(2), 1.
Compeau, D. R., & Higgins, C. A. (1995). Application of social cognitive theory to training for computer skills. Information Systems Research, 6(2), 118-143.
Connolly, D.J., Olsen, M.D., Moore, R.G., (1998). The Internet as a distribution channel. Cornell Hotel and Restaurant Administration Quarterly 39 (4), 42–54.
Culnan, M. J. (1995). Consumer awareness of name removal procedures: Implications for direct marketing. Journal of Direct Marketing, 9(2), 10-19.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. Management Information System Quarterly, 13(3), 319-340.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003.
Ding, X., IIJIMA, J., & Ho, S. (2004). Unique features of mobile commerce. Journal of Electronic Science and Technology of China, 2(3), 205-210.
Doll, W. J., Xia, W., & Torkzadeh, G. (1994). A confirmatory factor analysis of the end-user computing satisfaction instrument. Management Information System Quarterly, 18(4), 453-461.
Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research. State College, PA: Penn State University Press.
Fornell, C., & Larcker, D. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.
George, J. F. (2004). The theory of planned behavior and Internet purchasing. Internet Research, 14(3), 198-212.
Goodwin, C. (1991). Privacy: Recognition of a consumer right. Journal of Public Policy & Marketing, 10(1), 149-166.
Gupta, A., & Singh, K. (2013). Location based personalized restaurant recommendation system for mobile environments. In Advances in Computing, Communications and Informatics (ICACCI), 2013 International Conference on (507-511). IEEE.
Hoffman, D. L., Novak, T. P., & Peralta, M. (1999). Building consumer trust online. Communications of the Association for ComputingMachinery, 42(4), 80-85.
Hu, P. J., Chau, P. Y., Sheng, O. R. L., & Tam, K. Y. (1999). Examining the technology acceptance model using physician acceptance of telemedicine technology. Journal of Management Information Systems, 16(2), 91-112.
Hung, S. Y., Chang, C. M., & Yu, T. J. (2006). Determinants of user acceptance of the e-Government services: The case of online tax filing and payment system. Government Information Quarterly, 23(1), 97-122.
Hsu, M. H., & Chiu, C. M. (2004). Internet self-efficacy and electronic service acceptance. Decision Support Systems, 38(3), 369-381.
Hsueh, C. Y., Chen, K. H., & Chen, P. M. (2014). The Exploratory Study of Constructing the Scale for Service Convenience in Mobile APP: The Case of Chain Hotel in Taiwan. In e-Business Engineering (ICEBE), 2014 IEEE 11th International Conference on (268-273). IEEE.
Igbaria, M., & Iivari, J. (1995). The effects of self-efficacy on computer usage. Omega, 23(6), 587-605.
Igbaria, M., Guimaraes, T., & Davis, G. B. (1995). Testing the determinants of microcomputer usage via a structural equation model. Journal of Management Information Systems, 11(4), 87-114.
Jahangir, N., & Begum, N. (2008). The role of perceived usefulness, perceived ease of use, security and privacy, and customer attitude to engender customer adaptation in the context of electronic banking. African Journal of Business Management, 2(2), 32.
Kandampully, J., & Suhartanto, D. (2000). Customer loyalty in the hotel industry: the role of customer satisfaction and image. International Journal of Contemporary Hospitality Management, 12(6), 346-351.
Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information technology adoption across time: a cross-sectional comparison of pre-adoption and post-adoption beliefs. Management Information System Quarterly, 23(2), 183-213.
Kennedy-Eden, H., & Gretzel, U. (2012). A Taxonomy of Mobile Applications in Tourism. E-review of Tourism Research, 10(2), 47-50.
Keng, C.J., Huang, T.L., Zheng, L.J. and Hsu, M.K. (2007), Modeling service encounters and customer experiential value in retailing, International Journal of Service Industry Management, 18(4), 349-67.
Keeney, R.L. (1999). The value of internet commerce to the customer, Management Science, 45(4), 533-42.
Kelley, T. L. (1939). The selection of upper and lower groups for the validation of test items. Journal of Educational Psychology, 30(1), 17.
Kerin, R. A., Jain, A., & Howard, D. J. (1992). Store shopping experience and consumer price-quality-value perceptions. Journal of Retailing, 68(4), 376.
Khalifa, A.S. (2004), Customer value: a review of recent literature and an integrative configuration, Management Decision, 42(5), 645-66.
Kimes, S. E., & Kies, K. (2012). The role of multi-restaurant reservation sites in restaurant distribution management [Electronic article]. Cornell Hospitality Report, 12(3), 6-13.
Kim, T. G., Lee, J. H., & Law, R. (2008). An empirical examination of the acceptance behaviour of hotel front office systems: An extended technology acceptance model. Tourism Management, 29(3), 500-513.
Kim, Y. H., & Kim, Y. H. (2005). A study of online transaction self-efficacy, consumer trust, and uncertainty reduction in electronic commerce transaction. In System Sciences, 2005. HICSS'05. Proceedings of the 38th Annual Hawaii International Conference on (170c-170c). IEEE.
Kim, W.G., Ma, X., Kim, D.J., (2006). Determinants of Chinese hotel customers’ satisfaction and purchase intentions. Tourism Management 27(5), 890–900.
Lederer, A. L., Maupin, D. J., Sena, M. P., & Zhuang, Y. (2000). The technology acceptance model and the World Wide Web. Decision Support Systems, 29(3), 269-282.
Lee, Y., Kozar, K. A., & Larsen, K. R. (2003). The technology acceptance model: Past, present, and future. Communications of the Association for Information Systems, 12(1), 50.
Lee, W., Xiong, L., & Hu, C. (2012). The effect of Facebook users’ arousal and valence on intention to go to the festival: Applying an extension of the technology acceptance model. International Journal of Hospitality Management,31(3), 819-827.
Lian, J. W., & Lin, T. M. (2008). Effects of consumer characteristics on their acceptance of online shopping: Comparisons among different product types. Computers in Human Behavior, 24(1), 48-65.
Limayem, M., Khalifa, M., & Frini, A. (2000). What makes consumers buy from Internet? A longitudinal study of online shopping. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 30(4), 421-432.
Lu, H. P., & Yu-Jen Su, P. (2009). Factors affecting purchase intention on mobile shopping web sites. Internet Research, 19(4), 442-458.
MacCallum, R. C., & Austin, J. T. (2000). Applications of structural equation modeling in psychological research. Annual Review of Psychology, 51(1), 201-226.
Marakas, G. M., Yi, M. Y., & Johnson, R. D. (1998). The multilevel and multifaceted character of computer self-efficacy: Toward clarification of the construct and an integrative framework for research. Information Systems Research, 9(2), 126-163.
Mathieson, K. (1991). Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173-191.
Milne, G. R., & Rohm, A. J. (2000). Consumer privacy and name removal across direct marketing channels: Exploring opt-in and opt-out alternatives. Journal of Public Policy & Marketing, 19(2), 238-249.
Milne, G. R., & Gordon, M. E. (1993). Direct mail privacy-efficiency trade-offs within an implied social contract framework. Journal of Public Policy &
Marketing,12(2), 206-215.
Miyazaki, A. D., & Fernandez, A. (2001). Consumer perceptions of privacy and security risks for online shopping. Journal of Consumer Affairs, 35(1), 27-44.
Nath, R., Akmanligil, M., Hjelm, K., Sakaguchi, T., & Schultz, M. (1998). Electronic commerce and the Internet: issues, problems, and perspectives. International Journal of Information Management, 18(2), 91-101.
Newark-French, C. (2012). Mobile App Inventory Hungry Enough to Eat Internet Display Ad Spend, [w:] A taxonomy of mobile applications in tourism, red. H. Kennedy-Eden, U. Gretzel, e-Review of Tourism Research (eRTR), (10), 2.
Nowak, G. J., & Phelps, J. (1995). Direct marketing and the use of individual‐level consumer information: Determining how and when “privacy” matters. Journal of Direct Marketing, 9(3), 46-60.
Nunnally, J. C. (1978). Psychometric theory. New York, NY: MacGraw-Hill.
Olds, R. S., Thombs, D. L., & Tomasek, J. R. (2005). Relations between normative beliefs and initiation intentions toward cigarette, alcohol and marijuana. Journal of Adolescent Health, 37(1), 75.
Pan, Y., & Zinkhan, G. M. (2006). Exploring the impact of online privacy disclosures on consumer trust. Journal of Retailing, 82(4), 331-338.
Pernsteiner, C., Rauseo, N., (2000). Transforming the hospitality industry into ebusiness. Florida International University Hospitality Review, 18(2), 10–21.
Phelps, J., Nowak, G., & Ferrell, E. (2000). Privacy concerns and consumer willingness to provide personal information. Journal of Public Policy & Marketing, 19(1), 27-41.
Phelps, J. E., D'Souza, G., & Nowak, G. J. (2001). Antecedents and consequences of consumer privacy concerns: An empirical investigation. Journal of Interactive Marketing, 15(4), 2-17.
Pitt, L. F., Watson, R. T., & Kavan, C. B. (1995). Service quality: a measure of information systems effectiveness. Management Information System Quarterly, 19(2), 173-187.
Pousttchi, K. (2003). Conditions for acceptance and usage of mobile payment procedures. München, DE: University Library of Munich.
Riemenschneider, C. K., & Hardgrave, B. C. (2001). Explaining software development tool use with the technology acceptance model. The Journal of Computer Information Systems, 41(4), 1.
Rogers, E.M. (1983). Diffusion of Innovations. New York, NY: The Free Press.
Rubio, D. M., Berg-Weger, M., Tebb, S. S., Lee, E. S., & Rauch, S. (2003). Objectifying content validity: Conducting a content validity study in social work research. Social Work Research, 27(2), 94-104.
Shin, D. H. (2010). The effects of trust, security and privacy in social networking: A security-based approach to understand the pattern of adoption. Interacting with Computers, 22(5), 428-438.
Shih, H. P. (2004). An empirical study on predicting user acceptance of e-shopping on the Web. Information & Management, 41(3), 351-368.
Strader, T. J., & Shaw, M. J. (1997). Characteristics of electronic markets. Decision Support Systems, 21(3), 185-198.
Suh, B., & Han, I. (2003). The impact of customer trust and perception of security control on the acceptance of electronic commerce. International Journal of electronic commerce, 7(3), 135-161.
Triandis, H. C. (1977). Interpersonal behavior. Monterey, CA: Brooks/Cole Publishing Company.
Tsai, H.D., Huang, H.C., Jaw, Y.L., &Chen, W.K. (2006), Why online customers remain with a particular e-retailer: an integrative model and empirical evidence, Psychology and Marketing, 23(5), 447-64.
Van der Heijden, H. (2003). Factors influencing the usage of websites: the case of a generic portal in The Netherlands. Information & Management, 40(6), 541-549.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
Vijayasarathy, L. R. (2004). Predicting consumer intentions to use on-line shopping: the case for an augmented technology acceptance model. Information & Management, 41(6), 747-762.
Wang, D., & Fesenmaier, D. R. (2013). Transforming the travel experience: The use of smartphones for travel. Heidelberg, DE: Springer Berlin.
Wang, H. Y., & Wang, S. H. (2010). Predicting mobile hotel reservation adoption: Insight from a perceived value standpoint. International Journal of Hospitality Management, 29(4), 598-608.
Wang, D., Xiang, Z., Law, R., & Ki, T. P. (2015). Assessing hotel-related smartphone apps using online reviews. Journal of Hospitality Marketing & Management, 25(3), 1-23.
Webster, J., & Martocchio, J. (1992). Microcomputer Playfulness: Development of a Measure with Workplace Implications. Management Information Systems Quarterly, 16(2), 4.
Wu, J. H., & Wang, S. C. (2005). What drives mobile commerce? An empirical evaluation of the revised technology acceptance model. Information & Management, 42(5), 719-729.