簡易檢索 / 詳目顯示

研究生: 張凱傑
Chang, Kai-Chieh
論文名稱: 綠豆非葉綠色組織之光合作用相關基因的轉錄體分析
Transcriptomic Analysis of Photosynthesis-related Genes in Non-leaf Green Tissues of Mung Bean (Vigna radiata)
指導教授: 孫智雯
Sun, Chih-Wen
楊棋明
Yang, Chi-Ming
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 110
中文關鍵詞: 綠豆光合作用非葉綠色組之次世代定序葉綠素葉綠素螢光
英文關鍵詞: mung bean, photosynthesis, non-leaf green tissue(NLGT), next-generation sequencing (NGS), chlorophyll, chlorophull fluorescence
DOI URL: http://doi.org/10.6345/THE.NTNU.SLS.009.2019.D01
論文種類: 學術論文
相關次數: 點閱:326下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植物行光合作用主要的器官為葉片,但許多研究指出植物許多呈現綠色的組織也有光合作用能力,這些組織我們稱非葉綠色組織 (non-leaf green tissue, NLGT)。植物仰賴葉片行光合作用提供整個植株利用,然而非葉綠色組織行光合作用大多為提供組織本身需求。我們之前在綠豆不同發育階段的種子測得葉綠素含量及葉綠素螢光Fv/Fm的改變,表示綠豆種子可能具有光合作用能力。因此,本研究想要了解葉片與非葉綠色組織間光合作用基因表現差異。我們首先將綠豆種子作為非葉綠色組織,並以葉片作為對照進行次世代定序。結果顯示種子之種皮及子葉與葉片相比,光合作用及葉綠素代謝相關基因皆表現量下調,但是丙酮酸代謝的相關基因皆顯示上調。之後更進一步比較種子子葉與發芽後子葉的基因表現量差異,結果顯示發芽後子葉光合作用相關基因有較高的表現量。總結上述結果,本研究提供綠豆葉片及種子不同組織之光合作用相關的轉錄組資訊,未來可做為調節非葉綠色組織光合作用效率之應用。

    Leaves are the major organ where higher plants perform photosynthesis. Other green tissues, known as non-leaf green tissue (NLGT), also contain photosynthetic activities. Plants rely on leaf photosynthesis to provide utilization of the entire plant, while photosynthesis of NLGT primarily provides the tissue's own needs. Our previous data demonstrated that the chlorophyll content and chlorophyll fluorescence Fv / Fm were changed in the different development stages of mung bean seeds, indicating that seeds may have photosynthesis ability. Therefore, this research aims to understand the expression differences of photosynthesis-related gene between leaf and NLGT. We first performed next-generation sequencing using mung bean seeds and leaves to represent NLGT and control tissue, respectively. The results showed that the expression of photosynthesis- and chlorophyll-related genes were down regulated, whereas that of the pyruvate metabolic genes were up regulated in the seed coat (testa) and cotyledon. Later on, the differences in gene expression between seed cotyledons and germinated cotyledons were compared. The results revealed that the photosynthesis-related genes in the cotyledons after germination had higher expression level. In summary, this study provides transcriptome information regarding photosynthesis in different tissues of mung bean leaves and seeds, which can be used in the future to adjust the photosynthetic efficiency of NLGT.

    誌謝 i 摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 xi 檢索表 xii 第一章、前言 1 第二章、材料與方法 4 2.1、植物材料 4 2.2、試驗處理 4 2.2.1、樣本處理 4 2.2.2、轉錄組定序 4 2.2.3、光合色素含量測定 4 2.3、RNA純化與cDNA合成 5 2.4、轉錄組定序 5 2.5、生物資訊分析 5 2.6、葉綠素及類胡蘿蔔素含量 7 2.7、葉綠素螢光影像 7 第三章、結果 8 3.1、轉錄組定序及分析 8 3.1.1、轉錄組定序及組裝 8 3.1.2、序列功能群分析 8 3.1.3、TAIR資料庫比對 9 3.2、綠豆非葉片綠色組織與綠豆成熟葉轉錄組分析 9 3.2.1、綠豆非葉片綠色組織與成熟葉片基因差異表現分析 9 3.2.1.1、C3與L基因差異表現分析 9 3.2.1.2、T3與L基因差異表現分析 10 3.2.1.3、DAG5與L基因差異表現分析 10 3.2.2、綠豆非葉片綠色組織與成熟葉片之光合作用相關基因 11 3.2.2.1、C3與L光合作用基因差異表現 11 3.2.2.2、T3與L光合作用基因差異表現 12 3.2.2.3、DAG5與L光合作用基因差異表現 12 3.2.3、綠豆非葉片綠色組織與成熟葉片之葉綠素代謝相關基因 13 3.2.3.1、C3與L葉綠素代謝之基因差異表現 13 3.2.3.2、T3與L葉綠素代謝之基因差異表現 14 3.2.3.3、DAG5與L葉綠素代謝之基因差異表現 14 3.2.4、綠豆非葉片綠色組織與成熟葉片之訊息傳遞相關基因 14 3.2.4.1、C3與L訊息傳遞相關基因差異表現 15 3.2.4.2、T3與L訊息傳遞相關基因差異表現 15 3.2.4.3、DAG5與L訊息傳遞相關基因差異表現 16 3.2.5、綠豆非葉片綠色組織與成熟葉片之運輸相關基因 17 3.2.5.1、C3與L運輸相關基因差異表現 17 3.2.5.2、T3與L運輸相關基因差異表現 18 3.2.5.3、DAG5與L運輸相關基因差異表現 19 3.2.6、綠豆非葉片綠色組織與成熟葉片之細胞壁相關基因 20 3.2.6.1、T3與L細胞壁相關基因差異表現 20 3.3、綠豆種子之轉錄組分析 22 3.3.1、C3與T3基因差異表現分析 22 3.3.2、C3與T3光合作用相關基因差異表現分析 23 3.3.3、C3與T3葉綠素代謝相關基因差異表現分析 23 3.3.4、C3與T3運輸相關基因差異表現分析 24 3.4、綠豆子葉光合作用之轉錄組分析 25 3.4.1、C3與DAG5基因差異表現分析 25 3.4.2、C3與DAG5光合作用相關基因差異表現分析 25 3.4.3、C3與DAG5葉綠素代謝相關基因差異表現分析 26 3.4.4、C3與DAG5訊息傳遞相關基因差異表現分析 26 3.4.5、C3與DAG5運輸相關基因差異表現分析 27 3.5、綠豆光合色素含量分析 28 3.5.1、綠豆各階段種子光合色素含量分析 28 3.5.2、綠豆T3、T4、C3及C4之光合色素含量分析 29 3.6、綠豆葉綠素螢光分析 29 3.6.1、綠豆種子各階段葉綠素螢光 29 3.6.2、綠豆T3、T4、C3及C4之葉綠素螢光 30 第四章、討論 31 4.1、綠豆非葉綠色組織與葉片轉錄組分析 31 4.2、種子C3及T3轉錄組分析 35 4.3、種子C3及DAG5轉錄組分析 36 4.4、種子非葉綠色組織與葉片葉綠素含量分析 36 4.5、種子非葉綠色組織與葉片葉綠素螢光分析 37 第五章、結論 39 第六章、參考文獻 41

    Allen, D.K., J.B. Ohlrogge, and Y. Shachar‐Hill. 2009. The role of light in soybean seed filling metabolism. Plant J. 58:220-234.
    Allorent, G., Osorio, S., Ly Vu, J., Falconet, D., Jouhet, J., Kuntz, M., ... & Finazzi, G. 2015. Adjustments of embryonic photosynthetic activity modulate seed fitness in A rabidopsis thaliana. New Phytologist, 205(2), 707-719.
    Albanese, P., R. Melero, B.D. Engel, A. Grinzato, P. Berto, M. Manfredi, A. Chiodoni, J. Vargas, C.Ó.S. Sorzano, and E. Marengo. 2017. Pea PSII-LHCII supercomplexes form pairs by making connections across the stromal gap. Sci. Rep. 7:10067.
    Ali, K. and S. Purton. 2001. A molecular characterisation of PsaN: a nuclear-encoded subunit of the photosystem I complex of Chlamydomonas reinhardtii. Sci. Access 3.
    Ashraf, M.H.P.J.C. and P.J.C. Harris. 2013. Photosynthesis under stressful environments: an overview. Photosynthetica 51:163-190.
    Berardini, T.Z., S. Mundodi, L. Reiser, E. Huala, M. Garcia-Hernandez, P. Zhang, L.A. Mueller, J. Yoon, A. Doyle, and G. Lander. 2004. Functional annotation of the Arabidopsis genome using controlled vocabularies. Plant Physiol. 135:745-755.
    Calderone, V., M. Trabucco, A. Vujičić, R. Battistutta, G.M. Giacometti, F. Andreucci, R. Barbato, and G. Zanotti. 2003. Crystal structure of the PsbQ protein of photosystem II from higher plants. EMBO Rep. 4:900-905.
    Carrara, S., A. Pardossi, G.F. Soldatini, F. Tognoni, and L. Guidi. 2001. Photosynthetic activity of ripening tomato fruit. Photosynthetica 39:75-78.
    Chen, T.W., R.C.R. Gan, T.H. Wu, P.J. Huang, C.Y. Lee, Y.Y.M. Chen, C.C. Chen, and P. Tang. 2012. FastAnnotator-an efficient transcript annotation web tool. BMC genomics. 13 Suppl 7:S9
    Chen, H., D. Zhang, J. Guo, H. Wu, M. Jin, Q. Lu, C. Lu, and L. Zhang. 2006. A Psb27 homologue in Arabidopsis thaliana is required for efficient repair of photodamaged photosystem II. Plant Mol.Biol. 61:567-575.
    Croce, R., T. Morosinotto, S. Castelletti, J. Breton, and R. Bassi. 2002. The Lhca antenna complexes of higher plants photosystem I. Biochim. Biophys. Acta-Bioenerg. 1556:29-40.
    Croce, R. and H. Van Amerongen. 2014. Natural strategies for photosynthetic light harvesting. Nat. Chem. Biol. 10:492.
    Demmig‐Adams, B., W.W. Adams III, D.H. Barker, B.A. Logan, D.R. Bowling, and A.S. Verhoeven. 1996. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol. Plant. 98:253-264.
    Dobáková, M., R. Sobotka, M. Tichý, and J. Komenda. 2009. Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 149:1076-1086.
    Esteban, R., O. Barrutia, U. Artetxe, B. Fernández‐Marín, A. Hernández, and J.I. García‐Plazaola. 2015. Internal and external factors affecting photosynthetic pigment composition in plants: a meta‐analytical approach. New Phytol. 206:268-280.
    Galili, G., T. Avin-Wittenberg, R. Angelovici, and A.R. Fernie. 2014. The role of photosynthesis and amino acid metabolism in the energy status during seed development. Front. Plant Sci. 5:447.
    Gambino, G., I. Perrone, and I. Gribaudo. 2008. A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem. Anal. 19:520-525.
    García‐Cerdán, J.G., L. Kovács, T. Tóth, S. Kereïche, E. Aseeva, E.J. Boekema, F. Mamedov, C. Funk, and W.P. Schröder. 2011. The PsbW protein stabilizes the supramolecular organization of photosystem II in higher plants. Plant J. 65:368-381.
    Hetherington, S.E., R.M. Smillie, and W.J. Davies. 1998. Photosynthetic activities of vegetative and fruiting tissues of tomato. J. Exp. Bot. 49:1173-1181.
    Hippler, M., F. Drepper, J. Farah, and J.D. Rochaix. 1997. Fast electron transfer from cytochrome c 6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii requires PsaF. Biochemistry 36:6343-6349.
    Ishihara, S., A. Takabayashi, K. Ido, T. Endo, K. Ifuku, and F. Sato. 2007. Distinct functions for the two PsbP-like proteins PPL1 and PPL2 in the chloroplast thylakoid lumen of Arabidopsis. Plant Physiol. 145:668-679.
    Lamesch, P., T.Z. Berardini, D. Li, D. Swarbreck, C. Wilks, R. Sasidharan, R. Muller, K. Dreher, D.L. Alexander, and M. Garcia-Hernandez. 2011. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40:D1202-D1210.
    Lin, Y.P., M.C. Wu, and Y.Y. Charng. 2016. Identification of chlorophyll dephytylase involved in chlorophyll turnover in Arabidopsis. Plant Cell:tpc. 00478.2016.
    Murakami, R., K. Ifuku, A. Takabayashi, T. Shikanai, T. Endo, and F. Sato. 2005. Functional dissection of two Arabidopsis PsbO proteins. FEBS J. 272:2165-2175.
    Oh, W., L. Abu-Elheiga, P. Kordari, Z. Gu, T. Shaikenov, S.S. Chirala, and S.J. Wakil. 2005. Glucose and fat metabolism in adipose tissue of acetyl-CoA carboxylase 2 knockout mice. Proc. Natl. Acad. Sci. U S A. 102:1384-1389.
    Ohmiya, A., K. Sasaki, K. Nashima, C. Oda-Yamamizo, M. Hirashima, and K. Sumitomo. 2017. Transcriptome analysis in petals and leaves of chrysanthemums with different chlorophyll levels. BMC Plant Biol. 17:202.
    Rochaix, J.D. 2007. Role of thylakoid protein kinases in photosynthetic acclimation. FEBS Lett. 581:2768-2775.
    Roose, J.L., K.M. Wegener, and H.B. Pakrasi. 2007. The extrinsic proteins of photosystem II. Photosynth. Res. 92:369-387.
    Smolikova, G.N. and S.S. Medvedev. 2016. Photosynthesis in the seeds of chloroembryophytes. Russ. J. Plant Physiol. 63:1-12.
    Taiz, L. and E. Zeiger. 2010. Plant physiology 5th Ed. Sunderland, MA: Sinauer Associates.
    Tanaka, A. and R. Tanaka. 2006. Chlorophyll metabolism. Curr. Opin. Plant Biol. 9:248-255.
    Tanaka, R. and A. Tanaka. 2011. Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochim. Biophys. Acta-Bioenerg. 1807:968-976.
    Tschiersch, H., L. Borisjuk, T. Rutten, and H. Rolletschek. 2011. Gradients of seed photosynthesis and its role for oxygen balancing. Biosystems 103:302-30
    von Sydow, L., S. Schwenkert, J. Meurer, C. Funk, F. Mamedov, and W.P. Schröder. 2016. The PsbY protein of Arabidopsis Photosystem II is important for the redox control of cytochrome b559. Biochim. Biophys. Acta-Bioenerg. 1857:1524-1533.
    Wakil, S.J. and L.A. Abu-Elheiga. 2009. Fatty acid metabolism: target for metabolic syndrome. J. Lipid Res. 50:S138-S143.
    Wu, M.X., D.A. Smyth, and C.C. Black. 1983. Fructose 2, 6-bisphosphate and the regulation of pyrophosphate-dependent phosphofructokinase activity in germinating pea seeds. Plant physiol. 73:188-191.
    Xu, Q., T.S. Armbrust, J.A. Guikema, and P.R. Chitnis. 1994. Organization of Photosystem I polypeptides (a structural interaction between the PsaD and PsaL subunits). Plant Physiol. 106:1057-1063.
    Yang, C.M., J.C. Hsu, and Y.R. Chen. 1995. Analysis of pigment-protein complexes in mungbean testa. Plant Physiol. Biochem.
    Zhang, Y., S. Mulpuri, and A. Liu, 2016. High light exposure on seed coat increases lipid accumulation in seeds of castor bean (Ricinus communis L.), a nongreen oilseed crop. Photosynth. Res. 128:125-140.

    下載圖示
    QR CODE