研究生: |
蕭淂雍 Hsiao, Te-Yung |
---|---|
論文名稱: |
綜合研究硫化動力學和過渡金屬離子吸附以增強 CdSe(en)0.5奈米片的 HER 性能:深入分析中孔結構變化和自由基形成 Comprehensive study on sulfurization kinetics and adsorption of transition metal ions to enhance the HER performance of CdSe(en)0.5 nanosheets: in-depth analysis of mesoporous structural changes and radical formation. |
指導教授: |
劉沂欣
Liu, Yi-Hsin |
口試委員: |
劉沂欣
Liu, Yi-Hsin 謝明惠 Shieh, Ming-huey 高琨哲 Kao, Kun-Che |
口試日期: | 2024/07/03 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 硒化鎘 、硫化鎘 、光催化水分解產氫 、各向異性蝕刻 、硫化 |
英文關鍵詞: | Cadmium Selenide, Cadmium Sulfide, Sulfurization, Photocatalytic Water Splitting, Anisotropic Etching |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401703 |
論文種類: | 學術論文 |
相關次數: | 點閱:84 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在我們的研究中,我們全面研究了 CdSe(en)0.5 奈米片在不同條件下的硫化動力學,強調了不同硫前驅物(硫化鈉/亞硫酸鈉;硫粉) 和氣氛 (氮氣;大氣) 的影響。我們透過柯肯德爾效應的角度,使用高解析度透射電子顯微鏡(HR-TEM)和能量色散 X 射線光譜(EDS)映射等先進技術,仔細分析材料的微觀結構,以了解形態變化和元素分佈。X 射線繞射(XRD)、EA-ICP 和元素分析證實了晶體結構和化學成分 (N:Se:S) 的變化,並利用氣相層析阻擋放電離子偵測器(GC-BID)發現不同硫化條件下的材料其光催化水分解析氫的顯著變化。電子順磁共振(EPR)分析進一步強調了氮氫自由基在催化過程中的關鍵作用,以及硫化後材料對環境敏感度變化,為了解硫化對自由基形成的影響提供了見解。此外,我們關於形成各向異性介孔結構的發現為利用過渡金屬離子的化學吸附提高催化效率開闢了新途徑,並有望在二維半導體光催化方面取得進展。
In our study, we comprehensively investigated the sulfidation kinetics of CdSe(en)0.5 nanosheets under different conditions, emphasizing the effects of different sulfur precursors (Na2S/Na2SO3; sulfur powder) and atmospheres (nitrogen; ambient). Through the perspective of the Kirkendall effect, we meticulously analyzed the microstructure of the materials using advanced techniques such as high-resolution transmission electron microscopy (HR-TEM) and energy-dispersive X-ray spectroscopy (EDS) mapping to understand morphological changes and elemental distribution. X-ray diffraction (XRD), EA-ICP, and elemental analysis confirmed the changes in crystal structure and chemical composition (N:Se:S), and gas chromatography-barrier ionization discharge (GC-BID) revealed significant changes in the photocatalytic hydrogen evolution from water splitting under different sulfidation conditions. Electron paramagnetic resonance (EPR) analysis further emphasized the critical role of nitrogen-hydrogen radicals in the catalytic process and the changes in environmental sensitivity of the material after sulfidation, providing insights into the effect of sulfidation on radical formation. Additionally, our findings on the formation of anisotropic mesoporous structures open up new avenues for enhancing catalytic efficiency through the chemical adsorption of transition metal ions, promising advancements in two-dimensional semiconductor photocatalysis.
1. Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light. Nat. Mater. 2009, 8 (1), 76–80. https://doi.org/10.1038/nmat2317.
2. Zhou, X.; Liu, N.; Schmidt, J.; Kahnt, A.; Osvet, A.; Romeis, S.; Zolnhofer, E. M.; Marthala, V. R. R.; Guldi, D. M.; Peukert, W. Noble-Metal-Free Photocatalytic Hydrogen Evolution Activity: The Impact of Ball Milling Anatase Nanopowders with TiH2. Adv. Mater. 2017, 29 (5), 1604747. https://doi.org/10.1002/adma.201604747.
3. Maeda, K. Photocatalytic Water Splitting Using Semiconductor Particles: History and Recent Developments. J. Photochem. Photobiol., C 2011, 12 (4), 237–268. https://doi.org/10.1016/j.jphotochemrev.2011.07.001.
4. Li, Y.; Li, Y.-L.; Sa, B.; Ahuja, R. Review of Two-Dimensional Materials for Photocatalytic Water Splitting from a Theoretical Perspective. Catal. Sci. Technol. 2017, 7 (3), 545–559. https://doi.org/10.1039/C6CY01976A.
5. Ganguly, P.; Byrne, C.; Breen, A.; Pillai, S. C. Antimicrobial Activity of Photocatalysts: Fundamentals, Mechanisms, Kinetics and Recent Advances. Appl. Catal., B 2018, 225, 51–75. https://doi.org/10.1016/j.apcatb.2017.11.018.
6. Ida, S.; Ishihara, T. Recent Progress in Two-Dimensional Oxide Photocatalysts for Water Splitting. J. Phys. Chem. Lett. 2014, 5 (15), 2533–2542. https://doi.org/10.1021/jz501055h.
7. Pacilé, D.; Meyer, J. C.; Girit, Ç. Ö.; Zettl, A. The Two-Dimensional Phase of Boron Nitride: Few-Atomic-Layer Sheets and Suspended Membranes. Appl. Phys. Lett. 2008, 92 (13), 133107. https://doi.org/10.1063/1.2903702.
8. Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B. Two-Dimensional Colloidal Nanocrystals. Chem. Rev. 2016, 116 (18), 10934–10982. https://doi.org/10.1021/acs.chemrev.6b00178.
9. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D Transition Metal Dichalcogenides. Nat. Rev. Mater. 2017, 2 (8), 17033. https://doi.org/10.1038/natrevmats.2017.33.
10. Zhang, K.; Feng, Y.; Wang, F.; Yang, Z.; Wang, J. Two Dimensional Hexagonal Boron Nitride (2D-hBN): Synthesis, Properties and Applications. J. Mater. Chem. C 2017, 5 (46), 11992–12022. https://doi.org/10.1039/C7TC04300G.
11. Wen, J.; Xie, J.; Chen, X.; Li, X. A Review on g-C3N4-Based Photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. https://doi.org/10.1016/j.apsusc.2016.07.030.
12. Low, J.; Cao, S.; Yu, J.; Wageh, S. Two-Dimensional Layered Composite Photocatalysts. Chem. Commun. 2014, 50 (74), 10768–10777. https://doi.org/10.1039/C4CC03664D.
13. Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. Colloidal Nanoplatelets with Two-Dimensional Electronic Structure. Nat. Mater. 2011, 10 (12), 936–941. https://doi.org/10.1038/nmat3145.
14. Tessier, M. D.; Javaux, C.; Maksimovic, I.; Loriette, V.; Dubertret, B. Spectroscopy of Single CdSe Nanoplatelets. ACS Nano 2012, 6 (8), 6751–6758. https://doi.org/10.1021/nn3014857.
15. Benchamekh, R.; Gippius, N. A.; Even, J.; Nestoklon, M. O.; Jancu, J.-M.; Ithurria, S.; Dubertret, B.; Efros, A. L.; Voisin, P. Tight-Binding Calculations of Image-Charge Effects in Colloidal Nanoscale Platelets of CdSe. Phys. Rev. B 2014, 89 (3), 035307. https://doi.org/10.1103/PhysRevB.89.035307.
16. Feldmann, J.; Peter, G.; Göbel, E. O.; Dawson, P.; Moore, K.; Foxon, C. T.; Elliott, R. J. Linewidth Dependence of Radiative Exciton Lifetimes in Quantum Wells. Phys. Rev. Lett. 1987, 59 (20), 2337–2340. https://doi.org/10.1103/PhysRevLett.59.2337.
17. Li, Q.; Liu, Q.; Schaller, R. D.; Lian, T. Reducing the Optical Gain Threshold in Two-Dimensional CdSe Nanoplatelets by the Giant Oscillator Strength Transition Effect. J. Phys. Chem. Lett. 2019, 10 (7), 1624–1632. https://doi.org/10.1021/acs.jpclett.9b00362.
18. Li, Q.; Lian, T. Area-and Thickness-Dependent Biexciton Auger Recombination in Colloidal CdSe Nanoplatelets: Breaking the “Universal Volume Scaling Law”. Nano Lett. 2017, 17 (5), 3152–3158. https://doi.org/10.1021/acs.nanolett.7b00522.
19. Grim, J. Q.; Christodoulou, S.; Di Stasio, F.; Krahne, R.; Cingolani, R.; Manna, L.; Moreels, I. Continuous-Wave Biexciton Lasing at Room Temperature Using Solution-Processed Quantum Wells. Nat. Nanotechnol. 2014, 9 (11), 891–895. https://doi.org/10.1038/nnano.2014.187.
20. Klimov, V. I.; Ivanov, S. A.; Nanda, J.; Achermann, M.; Bezel, I.; McGuire, J. A.; Piryatinski, A. Single-Exciton Optical Gain in Semiconductor Nanocrystals. Nature 2007, 447 (7143), 441–446. https://doi.org/10.1038/nature05839.
21. Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H.-J.; Bawendi, M. G. Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots. Science 2000, 290 (5490), 314–317. https://doi.org/10.1126/science.290.5490.314.
22. Li, Q.; Lian, T. Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets. Acc. Chem. Res. 2019, 52 (9), 2684–2693. https://doi.org/10.1021/acs.accounts.9b00252.
23. Yu, J.; Chen, R. Optical Properties and Applications of Two-Dimensional CdSe Nanoplatelets. InfoMat 2020, 2 (5), 905–927. https://doi.org/10.1002/inf2.12122.
24. Kulakovich, O.; Strekal, N.; Yaroshevich, A.; Maskevich, S.; Gaponenko, S.; Nabiev, I.; Woggon, U.; Artemyev, M. Enhanced Luminescence of CdSe Quantum Dots on Gold Colloids. Nano Lett. 2002, 2 (12), 1449–1452. https://doi.org/10.1021/nl025844w.
25. Zhukovskyi, M.; Tongying, P.; Yashan, H.; Wang, Y.; Kuno, M. Efficient Photocatalytic Hydrogen Generation from Ni Nanoparticle Decorated CdS Nanosheets. ACS Catal. 2015, 5 (11), 6615–6623. https://doi.org/10.1021/acscatal.5b01505.
26. Magana, D.; Perera, S. C.; Harter, A. G.; Dalal, N. S.; Strouse, G. F. Switching-On Superparamagnetism in Mn/CdSe Quantum Dots. J. Am. Chem. Soc. 2006, 128 (9), 2931–2939. https://doi.org/10.1021/ja0581808.
27. Li, C.; Hsu, S.-C.; Lin, J.-X.; Chen, J.-Y.; Chuang, K.-C.; Chang, Y.-P.; Hsu, H.-S.; Chen, C.-H.; Lin, T.-S.; Liu, Y.-H. Giant Zeeman Splitting for Monolayer Nanosheets at Room Temperature. J. Am. Chem. Soc. 2020, 142 (49), 20616–20623. https://doi.org/10.1021/jacs.0c08952.
28. Yu, J. H.; Liu, X.; Kweon, K. E.; Joo, J.; Park, J.; Ko, K.-T.; Lee, D. W.; Shen, S.; Tivakornsasithorn, K.; Son, J. S.; et al. Giant Zeeman Splitting in Nucleation-Controlled Doped CdSe: Mn2+ Quantum Nanoribbons. Nat. Mater. 2010, 9 (1), 47–53. https://doi.org/10.1038/nmat2583.
29. Vlaskin, V. A.; Barrows, C. J.; Erickson, C. S.; Gamelin, D. R. Nanocrystal Diffusion Doping. J. Am. Chem. Soc. 2013, 135 (38), 14380–14389. https://doi.org/10.1021/ja406497s.
30. Saidzhonov, B.; Kozlovsky, V.; Zaytsev, V.; Vasiliev, R. Ultrathin CdSe/CdS and CdSe/ZnS Core-Shell Nanoplatelets: The Impact of the Shell Material on the Structure and Optical Properties. J. Lumin. 2019, 209, 170–178. https://doi.org/10.1016/j.jlumin.2019.01.034.
31. Li, Z. J.; Wang, J. J.; Li, X. B.; Fan, X. B.; Meng, Q. Y.; Feng, K.; Chen, B.; Tung, C. H.; Wu, L. Z. An Exceptional Artificial Photocatalyst, NiH-CdSe/CdS Core/Shell Hybrid, Made In Situ from CdSe Quantum Dots and Nickel Salts for Efficient Hydrogen Evolution. Adv. Mater. 2013, 25 (45), 6613–6618. https://doi.org/10.1002/adma.201302512.
32. Kamat, P. V. Graphene-Based Nanoassemblies for Energy Conversion. J. Phys. Chem. Lett. 2011, 2 (3), 242–251. https://doi.org/10.1021/jz101639v.
33. Geim, A. K.; Novoselov, K. S. The Rise of Graphene. In Nanoscience and Technology: A Collection of Reviews from Nature Journals; World Scientific: 2010; pp 11–19.
34. Cao, A.; Liu, Z.; Chu, S.; Wu, M.; Ye, Z.; Cai, Z.; Chang, Y.; Wang, S.; Gong, Q.; Liu, Y. A Facile One-Step Method to Produce Graphene–CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials. Adv. Mater. 2010, 22 (1), 103–106. https://doi.org/10.1002/adma.200902850.
35. Lin, Y.; Zhang, K.; Chen, W.; Liu, Y.; Geng, Z.; Zeng, J.; Pan, N.; Yan, L.; Wang, X.; Hou, J. Dramatically Enhanced Photoresponse of Reduced Graphene Oxide with Linker-Free Anchored CdSe Nanoparticles. ACS Nano 2010, 4 (6), 3033–3038. https://doi.org/10.1021/nn1003166.
36. Luo, J.; Kim, J.; Huang, J. Material Processing of Chemically Modified Graphene: Some Challenges and Solutions. Acc. Chem. Res. 2013, 46 (10), 2225–2234. https://doi.org/10.1021/ar300165g.
37. Loh, K. P.; Bao, Q.; Ang, P. K.; Yang, J. The Chemistry of Graphene. J. Mater. Chem. 2010, 20 (12), 2277–2289. https://doi.org/10.1039/B920539J.
38. Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. J. Am. Chem. Soc. 2008, 130 (18), 5856–5857. https://doi.org/10.1021/ja800745y.
39. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The Chemistry of Graphene Oxide. Chem. Soc. Rev. 2010, 39 (1), 228–240. https://doi.org/10.1039/B917103G.
40. Mao, S.; Pu, H.; Chen, J. Graphene Oxide and Its Reduction: Modeling and Experimental Progress. RSC Adv. 2012, 2 (7), 2643–2662. https://doi.org/10.1039/C2RA00663B.
41. Gómez-Navarro, C.; Meyer, J. C.; Sundaram, R. S.; Chuvilin, A.; Kurasch, S.; Burghard, M.; Kern, K.; Kaiser, U. Atomic Structure of Reduced Graphene Oxide. Nano Lett. 2010, 10 (4), 1144–1148. https://doi.org/10.1021/nl9031617.
42. Eda, G.; Mattevi, C.; Yamaguchi, H.; Kim, H.; Chhowalla, M. Insulator to Semimetal Transition in Graphene Oxide. J. Phys. Chem. C 2009, 113 (35), 15768–15771. https://doi.org/10.1021/jp9051402.
43. Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g‐C3N4‐Based Heterostructured Photocatalysts. Adv. Energy Mater. 2018, 8 (3), 1701503. https://doi.org/10.1002/aenm.201701503.
44. Li, Y.; Li, X.; Zhang, H.; Fan, J.; Xiang, Q. Design and Application of Active Sites in g-C3N4-Based Photocatalysts. J. Mater. Sci. Technol. 2020, 56, 69–88. https://doi.org/10.1016/j.jmst.2020.05.031.
45. Li, X.; Zhang, J.; Huo, Y.; Dai, K.; Li, S.; Chen, S. Two-Dimensional Sulfur-and Chlorine-Codoped g-C3N4/CdSe-Amine Heterostructures Nanocomposite with Effective Interfacial Charge Transfer and Mechanism Insight. Appl. Catal. B Environ. 2021, 280, 119452. https://doi.org/10.1016/j.apcatb.2020.119452.
46. Perreault, F.; De Faria, A. F.; Elimelech, M. Environmental Applications of Graphene-Based Nanomaterials. Chem. Soc. Rev. 2015, 44 (16), 5861–5896. https://doi.org/10.1039/C5CS00021A.
47. Tian, Z.; Li, J.; Zhu, G.; Lu, J.; Wang, Y.; Shi, Z.; Xu, C. Facile Synthesis of Highly Conductive Sulfur-Doped Reduced Graphene Oxide Sheets. Phys. Chem. Chem. Phys. 2016, 18 (2), 1125–1130. https://doi.org/10.1039/C5CP05825K.
48. Song, L.; Zhang, J.; Sun, L.; Xu, F.; Li, F.; Zhang, H.; Si, X.; Jiao, C.; Li, Z.; Liu, S.; Liu, Y.; Zhou, H.; Sun, D.; Du, Y.; Cao, Z.; Gabelica, Z. Mesoporous Metal–Organic Frameworks: Design and Applications. Energy Environ. Sci. 2012, 5 (10), 7508–7520. https://doi.org/10.1039/C2EE22055C.
49. 謝, 政穎. 魔術尺寸硒化鎘奈米團簇物及二維結構之合成、鑑定與應用 (Master's thesis, 國立臺灣師範大學, Taipei, 2016).
50. 謝, 宗恩. 魔術尺寸-硒化鎘奈米團簇物之結構解析與陰/陽離子取代之二維結構硒化鎘奈米片之應用探討 (Master's thesis, 國立臺灣師範大學, Taipei, 2018).
51. Liu, C.; Sakimoto, K. K.; Colón, B. C.; Silver, P. A.; Nocera, D. G. Ambient Nitrogen Reduction Cycle Using a Hybrid Inorganic–Biological System. Proc. Natl. Acad. Sci. U.S.A. 2017, 114 (25), 6450–6455. https://doi.org/10.1073/pnas.1706371114.
52. Huynh, M.; Shi, C.; Billinge, S. J. L.; Nocera, D. G. Nature of Activated Manganese Oxide for Oxygen Evolution. J. Am. Chem. Soc. 2015, 137 (47), 14887–14904. https://doi.org/10.1021/jacs.5b09212.
53. Bediako, D. K.; Surendranath, Y.; Nocera, D. G. Mechanistic Studies of the Oxygen Evolution Reaction Mediated by a Nickel–Borate Thin Film Electrocatalyst. J. Am. Chem. Soc. 2013, 135 (9), 3662–3674. https://doi.org/10.1021/ja312691z.
54. 莊, 凱鈞. 錳摻雜單層二維量子結構半導體之合成、鑑定及應用 (Master's thesis, 國立臺灣師範大學, Taipei, 2021).
55. Zubair, M.; Mustafa, M.; Ali, A.; Doh, Y. H.; Choi, K. H. Improvement of Solution Based Conjugate Polymer Organic Light Emitting Diode by ZnO–Graphene Quantum Dots. J. Mater. Sci. Mater. Electron. 2015, 26 (5), 3344–3351. https://doi.org/10.1007/s10854-015-2820-1.
56. Marneffe, J.-F. D.; Chan, B. T.; Spieser, M.; Vereecke, G.; Naumov, S.; Vanhaeren, D.; Wolf, H.; Knoll, A. W. Conversion of a Patterned Organic Resist into a High Performance Inorganic Hard Mask for High Resolution Pattern Transfer. ACS Nano 2018, 12 (11), 11152–11160. https://doi.org/10.1021/acsnano.8b05522.
57. Klein, N.; Senkovska, I.; Gedrich, K.; Stoeck, U.; Henschel, A.; Mueller, U.; Kaskel, S. A Mesoporous Metal–Organic Framework. Angew. Chem., Int. Ed. 2009, 48 (52), 9954–9957. https://doi.org/10.1002/anie.200904637.
58. Dufour, M.; Izquierdo, E.; Livache, C.; Martinez, B.; Silly, M. G.; Pons, T.; Lhuillier, E.; Delerue, C.; Ithurria, S. Doping as a Strategy to Tune Color of 2D Colloidal Nanoplatelets. ACS Appl. Mater. Interfaces 2019, 11 (11), 10128–10134. https://doi.org/10.1021/acsami.8b19700.