研究生: |
朱文萍 Zhu,Wen-Ping |
---|---|
論文名稱: |
三維鐵磁性帕茲模型的相變現象 Phase Transitions of 3D Ferromagnetic Potts model |
指導教授: | 江府峻 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 26 |
中文關鍵詞: | 帕茲模型 、像變 、Wolff 演算法 、多層感知器 、卷積神經網絡 |
DOI URL: | http://doi.org/10.6345/NTNU201900672 |
論文種類: | 學術論文 |
相關次數: | 點閱:97 下載:27 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本次研究主要探討了三維的帕茲模型 (Potts model) 的相變現象。我們使用了蒙地卡羅的方法,搭配 Wolff 演算法製造出不同溫度下的自旋組態,並且透過傳統方法中的能量圖和類神經網絡中的多層感知器和卷積神經網絡的計算來分析是否有產生相變現象。而在類神經網絡的部分,使用了低溫中的基態當作是訓練集,藉由最後的向量輸出y的長度|R|來判別臨界溫度Tc附近是否有發生相變現象。此種做法比起其它相關的類神經網絡在凝態物理的文獻中所使用的訓練 集,來得更有效率,並且也可以達到和已知文獻上相同的結果。
This research mainly explores the phase transition of the three-dimensional q-states Potts model. We used Monte Carlo′s method and combined with the Wolff algorithm to create spin configurations at different temperatures. We analyze whether there is a phase change phenomenon by using the traditional idea and the calculations in multi-layer perceptron and convolutional neural network. In the part of the neural network, the ground state in the low temperature is used as the training set, and the critical temperature Tc is analyzed by examining whether there is a phase change phenomenon through the length |R| of the last output vector y. This method is not only more efficient than the training set used in other related works but also achieve the same results as known in the literature.
[1] R. B. Potts, Some Generalized Order-Disorder Transformations. Mathematical Pro- ceedings of the Cambridge Philosophical Society, 48(1), 106-109. (1951)
[2] R. J. Baxter, Potts model at the critical temperature, Journal of Physics C: Solid State Physics, 6, 23 (1973), L445–L448.
[3] F.-Y. Wu, The potts model, Reviews of modern physics, 54, 235 –Published 1 January(1982).
[4] A. Aharony and E. Pytte, First-and second-order transitions in the Potts model near four dimensions, Phys. Rev. B23, 362-367 (1981).
[5] B. Nienhuis, E. K. Riedel, and M. Schick, q-state Potts model in general dimension, Phys. Rev. B, 6055–6060 (1981)
[6] M. Fukugita and M. Okawa, Correlation length of the three-state Potts model in three dimensions, Phys. Rev. Lett., 13–15 (1989)
[7] O. F. de Alcantara Bonfim, Finite-size effects and phase transition in the three- dimensional three-state Potts model, J. Stat Phys (1991) 62: 105.
[8] http://latt.if.usp.br/technical-pages/twawesab/Text.html/node1.html 30
[9] E. Luijten, Introduction to Cluster Monte Carlo Algorithms, Lect. Notes Phys. 703, 13–38 (2006)
[10] E. Carlon, Computational Physics: Advanced Monte Carlo Methods.
http://itf.fys.kuleuven.be/~enrico/Teaching/monte_ carlo_2014.pdf. (2012).
[11] Sebastian Raschka, Python Machine Learning, Packt Publishing. (2017)
[12] Leon Bottou, Stochastic Gradient Descent Tricks, Lecture Notes in Computer Sci- ence (LNCS), Neural Networks, Tricks of the Trade, Reloaded (2012)
[13] N. Qian, On the momentum term in gradient descent learning algorithms, Neural networks, 12, 1, 145-151 (1999)
[14] John Duchi, Elad Hazan, and Yoram Singer, Adaptive subgradient methods for online learning and stochastic optimization, Journal of Machine Learning Research 12 (Jul): 2121–2159 (2011)
[15] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky, Lecture 6e rmsprop: Di- vide the gradient by a running average of its recent magnitude
[16] Diederik P. Kingma and Jimmy Ba, Adam: A Method for Stochastic Optimization, 3rd International Conference on Learning Representations, ICLR 2015,San Diego, CA, USA,Conference Track Proceedings,May 7-9. (2015)
[17] Chien-De Li, Applications of artificial neural networks in physics : a study of the phase transitions of two dimensional Potts models on the quare lattice, NTNU, PHD dissertation. (2018)