簡易檢索 / 詳目顯示

研究生: 劉南新
Nan-Hsin Liu
論文名稱: 約分諧波鎖模光纖雷射之研究與創新
Study of Rational Harmonic Mode-Locked Fiber Laser and Innovation
指導教授: 曹士林
Tsao, Shyh-Lin
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 112
中文關鍵詞: 鎖模雷射振幅調變器相位調變器光單向器脈衝抖動率
英文關鍵詞: mode-locked, Amplitude modulation, Phase modulation, isolator, RMS jitter
論文種類: 學術論文
相關次數: 點閱:171下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出利用不同調變器於環形光纖雷射架構做調變,並利用振幅調變器外加調變信號對共振腔內部做振幅調變產生高速脈衝信號並加入光單向器於架構中以達到振幅鎖模與脈衝穩定的效果,降低其波型抖動程度,之後我們再利用相位調變器外加調變信號在其相同之共振腔結構內部的縱像模態做相位的鎖模,最後使用振幅調變器及相位調變器外加調變信號同時對共振腔內部做調變,以達到高速脈衝鎖模的效果。在本實驗中使用三種不同的調變器,並加調變信號加以分析,脈衝抖動改善及其在創新架構下所能達到的高速。

    In this thesis, we propose a fiber ring harmonic mode-locked fiber laser and detuning modulation frequency. We generate amplitude modulation by exciting outside RF modulation signal. In case of producing high speed pulse train signal, we also drive isolator in the fiber ring cavity system to stable the RMS jitter. Then we also generate phase modulation by exciting outside RF signal to make the phase longitudinal modes locking. At the last, we utilize amplitude modulation and phase modulation to produce high speed pulse train in the fiber ring cavity system.
    In this fiber ring cavity system, we use three different kinds component to produce high speed pulse train and detuning the RF modulation frequency to ameliorate RMS jitter.

    Contents Chinese Abstract…………………………………………………i English Abstract……………………………………………………ii Acknowledgment…………………………………………………… iii Contents...…………………………………………………………iv List of Figures……………………………………………………viii Chapter 1 Introduction…………………………………………1 Chapter 2 Experimental Analysis of Amplitude Modulated Mode-Locked Fiber Ring Laser……………………4 2-1 Introduction…………………………………………………………………4 2-2 Fundamental Physics of Active Mode-Locking…………………………6 2-2-1 Theory of Mode-Locking…………………………………………11 2-2-2 Amplitude Modulated Mode-Locked Laser……………………14 2-2-3 Rational Harmonic Mode-Locked Laser………………………16 2-3 Experimental Analysis of Amplitude Modulated Mode-Locked Fiber Ring Laser…………………………………………………………………19 2-3-1 Experimental Setup………………………………………………19 2-3-2 Analysis of Results………………………………………………20 2-3-2-1 5 GHz Pulse Train Generation……………………………22 2-3-2-2 7.5 GHz Pulse Train Generation………………………22 2-3-2-3 10 GHz Pulse Train Generation…………………………23 2-3-2-4 15 GHz Pulse Train Generation……………………………23 2-3-2-5 20 GHz Pulse Train Generation……………………………24 2-4 Discussion and Summary………………………………………………24 Chapter 3 Experimental Analysis of Phase Modulated Mode-Locked Fiber Ring Laser……………………37 3-1 Introduction ………………………………………………………………37 3-2 Fundamental Physics of Phase Modulated Mode-Locking………………41 3-2-1 Phase Modulated Mode-Locked Laser…………………………41 3-2-2 Rational Harmonic Mode-Locked Laser…………………………44 3-2-3 RMS Timing Jitter of the Mode-Locked Fiber Laser…............46 3-3 Experimental Analysis of Phase Modulated Mode-Locked Fiber Ring Laser…………………………………………………………………47 3-3-1 Experimental Setup………………………………………………47 3-3-2 Analysis of Results………………………………………………49 3-3-2-1 5 GHz Pulse Train Generation……………………………50 3-3-2-2 7.5 GHz Pulse Train Generation………………………51 3-3-2-3 10 GHz Pulse Train Generation…………………………51 3-3-2-4 15 GHz Pulse Train Generation……………………………51 3-3-2-5 20 GHz Pulse Train Generation……………………………52 3-4 Discussion and Summary………………………………………………52 Chapter 4 Experimental Analysis of Amplitude and Phase Modulated Mode-Locked Fiber Ring Laser………………66 4-1 Introduction……………………………………………………………83 4-2 Combine Amplitude Modulator and Phase Modulator Mode-Locking69 4-2-1 Theory of Time-Domain ABCD Matrix ………………………70 4-2-2 Characterization of ABCD MATRICES of Optical Elements…74 4-2-2-1 Amplitude Modulator………………………………75 4-2-2-2 Frequency (Phase) Modulator………………………76 4-3 Experimental Analysis of Amplitude + Phase Modulated Mode-Locked Fiber Ring Laser………………………………………………………77 4-3-1 Experimental Setup………………………………………………77 4-3-2 Analysis of Results………………………………………………78 4-3-2-1 5 GHz Pulse Train Generation…………………………80 4-3-2-2 9 GHz Pulse Train Generation……………………………80 4-3-2-3 12.5 GHz Pulse Train Generation………………………81 4-3-2-4 20 GHz Pulse Train Generation……………………………81 4-3-2-5 50 GHz Pulse Train Generation……………………………82 4-3-2-6 4-level Pulse Train Generation…………………………82 4-3-2-7 High Speed Train Generation……………………………83 4-4 Discussion and Summary………………………………………………83 Chapter 5 Conclusions………………………………………………99 References…………………………………………………………102 Publication Lists…………………………………………………xiii

    References

    [1] P. Y. chien, “Time-division multiplexing, pseudo-PM optical communicationsystem base on triangular waveform modulated laser diode,” J. Opt. Commun., vol. 13, pp. 23-25, 1992.
    [2] A. D. Ellis, D. M. Patrick, D. Flannery, R. J. Manning, D. A. O. Davies,and D. M. Spirit, “Ultra-high speed OTDM networks using semiconductor amplifier-based processing nodes,” J. Lightwave Technol., vol. 13, pp. 761–770, 1995.
    [3] V. W. S. Chan, K. L. Hall, E. Modiano, and K. A. Rauschenbach, “Architectures and Technologies for High-Speed Optical Data Networks,” J. Lightwave Technol., vol. 16, pp. 2146-2168, 1998.
    [4] S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron., vol. 34, pp. 2064-2079, 1998.
    [5] M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, “Ultrahigh-speed long distance TDM and WDM soliton transmission. technologies,” IEEE J. Sel. Topics Quantum Electron., vol. 6, pp. 363–396, 2000.
    [6] I. N. Duling III, “Subpicosecond all-fiber erbium laser,” Electron. Lett., vol. 27, pp. 544-545, 1991
    [7] R. Ludwig, U. Feiste, S. Diez, C. Schubert, C. Schmidt, H. J. Ehrke and H. G. Weber, “Unrepeatered 160Gbit/s RZ single-channel transmission over 160km of standard fibre at 1.55μm with hybrid MZI optical demultiplexer,” Electron. Lett., vol. 36, pp. 1405-1406, 2000.
    [8] S. B. Poole, D. N. Payne and M. E. Fermann, “Fabrication of low loss optical fibres containing rare-earth ions,” Electron. Lett., vol. 21, pp. 737-738, 1985.
    [9] H. J. Lee, K. Kim, and H. G. Kim, “Pulse-amplitude equalization of rational harmonic mode-locked fiber laser using a semiconductor optical amplifier loop mirror,” Opt. Commun., vol. 160, pp. 51–56, 1999.
    [10] S. Betti, T. Curti, B. Daino, G. De Marchis and E. Iannone, “State of polarization and phase noise independent coherent optical transmission system based on Stokes parameter detection,” Electron. Lett., vol. 24, pp. 1461-1462, 1988.
    [11] J. Mark, L. Y. Liu, K. L. Hall, H. A. Haus and E. P. Ippen, “Femtosecond pulse generation in a laser with a nonlinear external resonator,” Opt. Lett., vol. 14, pp. 48–50, 1989.
    [12] E. P. Ippen, H. A. Haus and L. Y. Liu, “Additive pulse modelocking,” J. Opt. Soc. Amer. B, Opt. Phys., vol. 6, pp. 1736–1745, 1989.
    [13] D. K. Negus, L. Spinelli, N. Goldblatt and G. Feugnet, “Sub-100 femtosecond pulse generation by Kerr lens mode-locking in Ti :Al2O3 ,” OSA Proc. Advanced Solid-State Lasers, vol. 10, pp. 120–124, 1991.
    [14] F. Salin, J. Squier and M. Piche, “Mode locking of Ti :Al2O3 lasers and self-focusing : A Gaussian approximation,” Opt. Lett., vol. 16, pp. 1674–1676, 1991.
    [15] M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium fiber ring laser,” Electron. Lett., vol. 30, pp. 1603–1605, 1994.
    [16] M. Nakazawa, K. Kimura, and E. Yoshida, “Supermode noise suppression in a harmonically modelocked fiber laser by selfphase modulation and spectral filtering,” Electron. Lett., vol. 32, pp. 461–463, 1996.
    [17] D. Jones, H. Haus, and E. Ippen, “Subpicosecond solitons in an activelymode-locked fiber laser,” Opt. Lett., vol. 21, pp. 1818–1820, 1996.
    [18] E. Yoshida, Y. Kimura, and M. Nakazawa, “20 Ghz, 1.8 ps pulse generation from a regeneratively modelocked erbium-doped fiber laser and its femtosecond pulse compression,” Electron. Lett., vol. 31, pp. 377–378, 1995.
    [19] M. Nakazawa, E. Yoshida, and K. Kimura, “Ideal phase-locked-loop operation of a 10 Ghz erbium-doped fiber laser using regenerative modeloking as an optical voltage controlled oscillator,” Electron. Lett., vol. 33, pp. 1318–1320, 1997.
    [20] K. Kimura and M. Nakazawa, “Dispersion-tuned harmonically modelocked fiber ring laser for self-synchronization to an external clock,” Opt. Lett., vol. 21, pp. 1984–1986, 1996.
    [21] F. K. Artner, D. Kopf, and U. Keller, “Solitary-pulse stabilization and shortening in actively mode-loked lasers,” J. Opt. Soc. Amer. B, vol. 12, pp. 486–496, 1995.
    [22] K. Gurs and R. Murller, "Beats and modulation in optical ruby lasers," Quantum Electronics, pp. 1113–1119, 1964.
    [23] H. A. Haus, "Mode-locking of lasers," IEEE J. Quantum Electron., vol. 6, pp. 1173-1185, 2000.
    [24] I. P. Alcock, A. I. Ferguson, D. C. Hanna, and A. C. Tropper, “Tunable, continuous-wave neodymium-doped monomode-fiber laser operating at 0.900 - 0.945 and 1.070 - 1.135 Mum,” Opt. Lett, vol. 11, pp. 709, 1986.
    [25] I. N. Duling, L. Goldberg, and J. F. Weller, “High-power, mode-locked Nd:fibre laser pumped by aninjection-locked diode array,” Electron. Lett., vol. 24, pp. 1333, 1988.
    [26] D. C. Hanna, A. Kazer,M.W. Phillips, D. P. Shepherd, and P. I. Suni, “Active mode-locking of an Yb:Er fibre laser,” Electron. Lett., vol. 25, pp. 95, 1989.
    [27] M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B, vol. 65, pp. 259, 1997.
    [28] L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and I. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B, vol. 65, pp. 277, 1997.
    [29] J. Wilson, and Hawks, “Lasers: principles and applications,” Prentice Hall, 2nd Edn., Chap. 3, 1987.
    [30] Z. Ahmed, and N. Onodera, “High repetition rate optical pulse generation by frequency multiplication in actively mode-locked fibre ring lasers,” Electron. Lett., vol. 5, pp. 55-57, 1996.
    [31] M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelockedpolarisation-maintaining erbium fibre ring laser,” Electron. Lett., vol. 30, pp. 1603-1605, 1994.
    [32] M. Y. Jeon, H. K. Lee, J. T. Ahn, D. S. Lim, H. Y. Kim, K. H. Kim E. H. Lee, “External fibre laser based pulse amplitude equalisation scheme forrational harmonic modelocking in a ring-type fibre laser,” Electron. Lett., vol. 34, pp. 182-184, 1998.
    [33] E. Yoshida, and M. Nakazawa, “80~200 GHz erbium doped fibre laser using a rational harmonicmode-locking technique,” Electron. Lett., vol. 32, pp. 1370-1372, 1996.
    [34] D. L. A. Seixas, and M. C. R. Carvalho, “50 GHz fiber ring laser using rational harmonic mode-locking,” IEEE MTT-S IMOC., vol. 1, pp. 351–353, 1987.
    [35] Z. Ahmed, and N. Onodera, “High repetition rate optical pulse generation by frequency multiplication in actively mode-locked fibre ring lasers,” Electron. Lett., vol. 5, pp. 55-57, 1996.
    [36] T. F. Carruthers and I. N. Duling, “10-GHz, 1.3-ps erbium fiber laser employing soliton pulse shortening,” Opt. Lett., vol. 21, no. 23, pp. 1927–1929, 1996.
    [37] M. Nakazawa and E. Yoshida, “A 40-GHz 850 fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett., vol. 12, no. 12, pp. 1613–1615, Dec. 2000.
    [38] J. D. Moores, W. S. Wong, and K. L. Hall, “50-Gbit/s optical pulse storage ring using novel rational-harmonic modulation,” Opt. Lett., vol.20, no. 24, pp. 2547–2549, 1995.
    [39] Z. Ahmed and N. Onodera, “High repetition rate optical pulse generation by frequency multiplication in actively modelocked fiber ring lasers,” Electron. Lett., vol. 32, no. 5, pp. 455–457, 1996.
    [40] M. Y. Jeon, H. K. Lee, J. T. Ahn, K. H. Kim, D. S. Lim, and E. H. Lee, “Pulse-amplitude-equalized output from a rational harmonic modelocked fiber laser,” Opt. Lett., vol. 23, no. 11, pp. 855–857, 1998.
    [41] Z. Li, C. Lou, K. T. Chan, Y. Li, and Y. Gao, “Theoretical and experimental study of pulse-amplitude-equalization in a rational harmonic mode-locked fiber ring laser,” IEEE J. Quantum Electron., vol. 37, no. 1, pp. 33–37, Jan. 2001.
    [42] S. Yang, Z. Li, C. Zhao, X. Dong, S. Yuan, G. Kai, and Q. Zhao, “Pulse-amplitude-equalization in a rational harmonic mode-locked fiber ring laser by using modulator as both mode-locker and equalizer,”IEEE Photon. Technol. Lett., vol. 15, no. 3, pp. 389–391, Mar. 2003.
    [43] K. S. Abedin, N. Onodera, and M. Hyodo, “Higher order FM modelocking for pulse-repetition-rate enhancement in actively mode-locked lasers theory and experiment,” IEEE J. Quantum Electron., vol. 35, no. 6, pp. 875–890, Jun. 1999.
    [44] S. Yang, E. A. Ponomarev, and X. Bao, “80 GHz pulse generation from a repetition-rate-doubled FM mode-locking fiber laser,” IEEE Photon. Technol. Lett., vol. 17, no. 2, pp. 300–302, Feb. 2005.
    [45] S. Yang and X. Bao, “Repetition-rate-multiplication in actively modelocking fiber laser by using phase modulated fiber loop mirror,” IEEE J. Quantum Electron., vol. 41, no. 10, pp. 1285–1292, Oct. 2005.
    [46] X. Wang, H. Yokoyama, and T. Shimizu, “Harmonic multiplication of mode-locking frequency by optical pulse train injection into a monolithic mode-locked laser diode,” in CLEO/Pac@r Rim ’95 Proc., 1995, vol. N2 .
    [47] P. –T. HO, “Phase and Amplitude Fluctuations in a Mode-Locked Laser,” IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. QE-21, NO. 11, NOVEMBER 1985
    [48] A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev., vol. 112, pp. 1940-1949, 1958.
    [49] C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron., vol. QE-18, pp. 259-264, 1982.
    [50] K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers, Part I and Part 11,” IEEE J. Quantum Electron., vol. QE-19,
    [51] D. J . Kuizenga and A. E. Siegman, “PM mode-locking of the homogeneous laser-Part 1: Theory,” IEEE J . Quantum Electron.vol. 6, pp. 694-708. 1970.
    [52] M. S. Demokan, “A model of a diode laser actively mode-locked by gain modulation,” Int. J. Electron., vol. 60, pp. 67-80, 1986. 181 A. J. Lowery and 1. W. Marshall, “Stabilization of mode-locked pulses using a travelling-wave semiconductor laser amplifier,” Efectron. Lett., vol. 26, pp. 104-106, 1990.
    [53] A. D. Ellis, K. Smith, and D. M. Patrick, “All optical clock recovery at bit rates up to 40 Gbit/s,” Electron. Lett., vol. 29, pp. 1323–1324, 1993.
    [54] Masataka Nakazawa, Fellow, IEEE, Hirokazu Kubota, Akio Sahara, Member, IEEE, and Kohichi Tamura, “Time-Domain ABCD Matrix Formalism for Laser Mode-Locking and Optical Pulse Transmission,” IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 34, NO. 7, JULY 1998.
    [55] A. G. Fox and T. Li, “Resonator modes in an interferometer,” Bell Syst.Tech. J., vol. 40, pp. 453–488, Mar. 1961.
    [56] G. D. Boyd and H. Kogelnik, “Generalized confocal resonator theory,” Bell Syst. Tech. J., vol. 41, pp. 1347–1369, July 1962.
    [57] A. E. Siegman, “Unstable optical resonators for laser applications,” Proc. IEEE, vol. 53, pp. 277–287, Mar. 1965.
    [58] H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt., vol. 5, no. 10, pp. 1550–1567, 1966.
    [59] L. W. Casperson, “Mode stability of lasers and periodic optical systems,” IEEE J. Quantum Electron., vol. QE-10,pp. 629–634, 1974.
    [60] A. Yariv, Introduction to Optical Electronics. New York: Holt, Rinehart, and Winston, 1971.
    [61] H. A. Haus, “Waves and fields in optoelectronics,” in Series in Solid State Physical Electronics. Englewood Cliffs, NJ: Prentice-Hall, 1984.
    [62] A. E. Siegman, Lasers. Mill Valley, CA: University Science, 1986.
    [63] D. J. Kuisenga and A. E. Siegman, “FM and AM modelocking of the homogeneous lasers—Part I: Theory,” IEEE J. Quantum Electron., vol. QE-6, pp. 694–708, 1970.
    [64] H. A. Haus, “A theory of forced modelocking,” IEEE J. Quantum Electron., vol. QE-11, pp. 323–330, 1975.
    [65] H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretchedpulse additive pulse mode-locking in fiber ring lasers: Theory and experiment,” IEEE J. Quantum Electron., vol. 31, pp. 591–598, Mar. 1995.
    [66] S. Namiki and H. A. Haus, “Noise of the stretched-pulse fiber laser: Part I—Theory,” IEEE J Quantum Electron., vol. 33, pp. 649–659, May 1997.

    無法下載圖示 本全文未授權公開
    QR CODE