簡易檢索 / 詳目顯示

研究生: 陳志沂
Jr-yi Chen
論文名稱: 自然影像中的光譜估計
A Study on the Illuminant Estimation in a Natural Image
指導教授: 周遵儒
Chou, Tzren-Ru
學位類別: 碩士
Master
系所名稱: 圖文傳播學系
Department of Graphic Arts and Communications
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 58
中文關鍵詞: 光源頻譜光譜估計主成份分析支援向量回歸
英文關鍵詞: Illuminant spectra, Illuminant estimation, Principal Component Analysis, Support vector regression
論文種類: 學術論文
相關次數: 點閱:274下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 彩色影像的呈現是由物體反射譜或透射譜、光源的光譜分佈及人眼感知三項變數交互作用而成,在拍攝過程中,會因為環境光源的變化導致影像中物體的顏色失真,想如實地呈現影像的色彩就必須掌握拍攝時環境光源的狀況。本研究的目標是希望可以利用色彩學的概念和統計學的方法來估計影像拍攝時環境光源的頻譜,以利模擬出接近物體原始色彩的影像。
    基於上述的動機,本研究計畫利用主成分分析(Principal Component Analysis)、支援向量回歸(Support Vector Regression)兩種方法來重建影像中日光的光譜,並比較兩個方法在光譜重建上的效果。希望能藉由實驗結果來提高影像顯示的準確性,並應用於影像合成、數位典藏等領域,讓我們可以透過修正影像中的光源頻譜,來獲取更佳的影像表現。

    The color image is the result of interaction among the reflectance of object, the spectra of illuminant incident on the scene and the eye. The change of environmental light source leads to the object show a different color during the process of capture. If we want to present true color, we must control environmental light source. The goals of the study focus on using the conception of color technology and method of statistics to estimate the illuminant spectra of environment, and rebuilding the original color image.
    In this study, we use Principal Component Analysis(PCA) and Support Vector Regression (SVR) to rebuild the spectra of daylight. finally we will assess the effect of two approach in spectra rebuilding.
    We hope through experimental results to improve the accuracy of image display. These results will be applied to color adjustment of synthesis image, digital archives, medical imaging and other digital image post-production process to make it be more natural.

    目錄 中文摘要…………………………………………………………………Ⅰ 英文摘要……………………………………………………………………… Ⅱ 目錄 ………………………………………………………………………… Ⅲ 圖目錄 ………………………………………………………………………… Ⅳ 表目錄 ………………………………………………………………………… Ⅵ 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 3 第三節 研究問題 4 第四節 名詞解釋 4 第二章 文獻探討 6 第一節 光譜相關的色彩學理論 6 第二節 影像光源頻譜估計法 12 第三節 小結 23 第三章 研究方法 24 第一節 研究流程 24 第二節 研究設備與工具 25 第三節 以主成分分析進行影像光譜估計 28 第三節 以支援向量回歸進行影像光譜估計 28 第四章 實驗結果與討論 38 第一節 不同訓練樣本數量下的PCA與SVR光譜重建結果 24 第二節 不同主成分數量下的PCA與SVR光譜重建結果 25 第三節 主成分分析與支援向量回歸的效果比較 28 第四節 小結 37 第五章 結論與建議 53 第一節 結論 24 第二節 不同主成分數量下的PCA與SVR光譜重建結果 25 參考文獻 56

    [1] 財團法人資訊策進會,“2007台灣數位內容產業發展白皮書”,台北:經濟部工業局,p10-16,2008。

    [2] 大田 登著/陳鴻興、陳詩涵合譯,“色彩工程學:理論與應用”,台北:全華圖書股份有限公司,2007。

    [3] F. Billmeyer、M. Saltzman, “Billmeyer and Saltzman's principles of color technology”,New York : Wiley, 2000.

    [4] 李明來,“實用多變數分析”,台北:九州圖書文物有限公司,452-486,2007。

    [5] http://www.tasi.ac.uk/images/cielab

    [6] 山中俊夫著/黃書倩譯,“色彩學的基礎”台北:六合出版社,2003。

    [7] 一見敏男(1995)。グラフィック表現のための色彩学入門。東京:日本印刷新聞社。

    [8] D. Tzeng, R. Berns, “A Review of Principal Component Analysis and Its Application to Color Technology,” Color research and application, Vol, 29(4), pp.84-98, 2005.

    [9] J. Romero, G Beltrán, and H Andrés, “Linear bases for representation of natural and artificial illuminants,” J. Optical Society America,.Vol. 14, pp.1007-1014, 1997

    [10] H. Andrés , J. Romero, J. Nieves, and L. Lee, “Color and spectral analysis of daylight in southern Europe,” J. Optical Society of America, Vol. 18, pp.1325- 1335, 2001.

    [11] J. Nieves, E. Valero, S. Nascimento, H. Andrés, and J. Romero, “Multispectral synthesis of daylight using a commercial digital CCD camera,” Applied Optics, Vol. 44,pp.5696-5703, 2005.

    [12] F. Imai, R. Berns, “Spectral estimation using trichromatic digital cameras,” in International Symposium on Multispectral Imaging and Color Reproduction for Digital Archives, pp.42–49, 1999..

    [13] F. Agahian, S Amirshahi, S Amirshahi , “Reconstruction of Reflectance Spectra Using weighted, principal component Analysis,” Color Research and Application, Vol. 33, No.5,pp.360-371,2008.

    [14] G.. Corzo., A. Pe˜naranda., P. Peer , “Estimation of a fluorescent lamp spectral distribution for color image in machine vision,” Machine Vision and Applications, Vol. 10, 2005.

    [15] V. Bochko, N Tsumura, Y Miyake, “A Spectral Color Imaging System for Estimating Spectral Reflectance of Paint,” The Journal of imaging science and technology, Vol. 51, n1, pp.70-78, 2007.

    [16] J. Nieves, C. Plata, E. Valero, and J. Romero, ”Unsupervised illuminant estimation from natural scenes: an RGB digital camera suffices ” APPLIED OPTICS , Vol. 47, No. 20, pp.3574-3584,2008.
    [17] Weida Zhou1, Li Zhang1, Licheng Jiao1, and Jin Pan, ”Regression Based on Unconstrained Convex Quadratic Programming,” Lecture Notes in Computer Science , Vol. 4221, pp.167-174, 2006.
    [18] R. Duda, P. Hart,D. Stork, “Pattern Classification ”,New York, A Wiley-Interscience Publication, 2000.

    [19] 白鵬,“支援向量機理論及工程應用實例”,西安:西安電子科技大學出版社,2008.

    [20] M. Ferris, and T. Munson. "Interior-point methods for massive support vector machines". SIAM Journal on Optimization , Vol. 13, pp.783–804, 2002.
    [21]V. Agarwal, A. Gribok, M. Abidi “Machine learning approach to color constancy,” Neural Network , Vol. 20, pp.559-563, 2007.

    [22] B. Funt ,W. Xiong “Estimating Illumination Chromaticity via Support Vector Regression,” IS&T/SID Twelfth Color Imaging Conference, 2004.

    [23] W. Zhang, D. Dai “ Spectral reflectance estimation from camera responses by support vector regression and a composite model,” J. Optical Society of America, pp.2286-2269, 2008.

    [24] V. Cherkassky, M, Yunqian “Practical Selection of SVM Parameters and Noise Estimation for SVM Regression,” Neural Network[J], 2004.

    [25] http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html
    [26] Jing Zhang, Xue-dong Zhang, Seok-wun Ha “A Novel Approach Using PCA and SVM for Face Detection,” IEEE Computer Society,Vol. 10, pp.29-33,2008.

    [27] http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

    下載圖示
    QR CODE