簡易檢索 / 詳目顯示

研究生: 謝育軒
Hsieh, Yu-Hsuan
論文名稱: 以神經微膠細胞發炎反應為標的之阿茲海默氏症治療策略
Therapeutic strategy targeting microglial-mediated inflammation in Alzheimer’s disease
指導教授: 李桂楨
Lee, Guey-Jen
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 53
中文關鍵詞: 阿茲海默氏症微膠細胞發炎反應喹啉衍生物
英文關鍵詞: Alzheimer’s disease, microglia, inflammation, quinoline derivatives
DOI URL: https://doi.org/10.6345/NTNU202202900
論文種類: 學術論文
相關次數: 點閱:126下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 阿茲海默氏症是常見的漸進性神經退化性疾病,主要病理特徵包括細胞外間質的β類澱粉樣纖維(Aβ fibril)堆積,及細胞內高度磷酸化tau形成的神經纖維糾結。目前對於阿茲海默氏症致病機制仍未完全了解,患者也無法被完全治癒,因此發展阿茲海默氏症的治療策略是相當重要的。近年研究顯示神經發炎反應在阿茲海默氏症上扮演重要的角色,因此抑制神經發炎反應已成為治療阿茲海默氏症的重要標的。與發炎反應相關的微膠細胞是中樞神經的免疫細胞,具有典型的M1 (發炎反應)及替代的M2 (免疫抑制)兩種活化路徑,因此調節微膠細胞活化狀態已被認為是治療神經發炎性疾病的策略。先前本實驗室於脂多醣(LPS)刺激的RAW264.7小鼠巨噬細胞實驗,發現化合物VB-030、037能降低一氧化氮(NO)、TNF-α、IL-1β、PEG2等發炎因子的釋放。延續此發現,本研究首先利用LPS或β類澱粉樣纖維刺激BV-2微膠細胞模式,探究化合物VB-030、037的抗發炎能力,結果發現VB-037能顯著降低LPS/β類澱粉樣纖維刺激BV-2細胞之NO及Iba1蛋白表現,表示VB-037具有抗β類澱粉樣纖維誘導細胞發炎的潛力,同時也利用小鼠發炎抗體矩陣(Mouse inflammation antibody array)揭示VB-037之抗發炎標的IL-1α,並利用西方轉漬分析證實VB-037能顯著降低活化之BV-2細胞之促發炎因子IL-1α。為了測試VB-037對於神經細胞的保護效果,我們利用受發炎刺激之BV-2細胞制約培養液或共處理發炎因子LPS與IFN-γ,建構誘導表現Aβ-GFP融合蛋白的人類SH-SY5Y神經母細胞瘤細胞發炎模式,實驗結果發現VB-037能提升表現Aβ-GFP融合蛋白的SH-SY5Y之細胞存活率,降低細胞損傷後之乳酸脫氫酶(LDH)釋放量,並促進神經突生長,同時前處理VB-037能降低受LPS與IFN-γ刺激之SH-SY5Y細胞IL1A及磷酸化P38 (T180/Y182)、JNK (T183/Y185)、JUN (S63、S73)蛋白表現量。綜合本研究的發現,VB-037具有抗β類澱粉樣纖維誘導之神經發炎作用及神經保護作用,有潛能發展為抗β類澱粉樣纖維誘導神經發炎之新穎藥物。

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by the presence of neurofibrillary tangles and amyloid plaques. Studies have shown that activated microglia are parallel to the disease region where pro-inflammatory cytokines are highly expressed, indicating that neuroinflammation may play an important role in AD. Microglia are the resident immune cell in the central nervous system and possess states of M1 (pro-inflammatory response) and M2 (immunosuppressive response). Regulating the activation state of microglia has been considered a potential therapy for neuroinflammatory disorders. Previously our laboratory found that compounds VB-030 and 037 reduced lipopolysaccharide (LPS)-induced release of NO, TNF-α, IL-1β and PEG2 from mouse macrophage RAW264.7 cells. In this study, anti-inflammation abilities of these two compounds were firstly tested by using BV-2 mouse microglia. VB-037 exhibited anti-inflammation activity by reducing NO release and Iba1 expression in LPS or Aβ fibril-stimulated BV-2 microglia. The therapeutic target of VB-037, IL-1α, was identified in BV-2 microglia using mouse inflammation antibody array. VB-037 further protected SH-SY5Y cells expressing Aβ-GFP from cell death and reduced lactate dehydrogenase (LDH) release induced by LPS/IFN-γ-stimulated BV-2 conditioned media or LPS and IFN-γ co-stimulation. VB-037 also promoted neurite outgrowth in Aβ-GFP expressing SH-SY5Y cells. The reduced expressions of IL1A, phospho-P38 (T180/Y182), phospho-JNK (T183/Y185), phospho-JUN (S63, S73) by VB-037 pre-treatment were further confirmed by Western blotting. These results indicated that VB-037 possessed anti-inflammation and neuro-protection effect on inflamed Aβ-GFP SH-SY5Y cells. In conclusion, VB-037 could be a novel therapeutic molecule on Alzheimer’s disease based on the anti-inflammation and neuro-protection effects.

    目錄 i 摘要 v 壹、緒論 1 一、阿茲海默氏症 1 二、神經發炎 2 三、喹啉衍生物 5 貳、研究目的 7 參、研究材料與方法 8 一、細胞株培養 8 二、細胞毒性測試 8 三、β類澱粉樣纖維(Aβ fibril)製備與Thioflavin T分析 9 四、NO測試 9 五、BV-2細胞西方墨點法分析 10 六、Mouse inflammation antibody array測試 11 七、BV-2細胞制約培養液製備 11 八、Tet-On Aβ-GFP SH-SY5Y細胞存活率測試 12 九、Tet-On Aβ-GFP SH-SY5Y細胞乳酸脫氫酶(LDH)分析 13 十、Tet-On Aβ-GFP SH-SY5Y細胞神經突生長 14 十一、Tet-On Aβ-GFP SH-SY5Y細胞西方墨點法分析 14 肆、結果 15 一、化合物VB-030、037結構及溶解度測試 16 二、化合物VB-030、037的細胞毒性測試 16 三、LPS/Aβ42刺激BV-2細胞發炎模式之VB-037抗發炎測試 16 四、揭示VB-037在抑制神經發炎的治療標的 18 五、以LPS及IFN-γ共同刺激BV-2細胞發炎之制約培養液製備 19 六、以Tet-On Aβ-GFP SH-SY5Y細胞發炎模式探討 VB-037之神經保護效果 20 七、以Tet-On Aβ-GFP SH-SY5Y細胞發炎模式探討 VB-037之神經保護機轉 22 伍、討論 24 一、微膠細胞之發炎反應 24 二、IL-1α與AD之關係 25 三、BV-2細胞發炎之制約培養液 26 四、喹啉衍生物之抗發炎與神經保護機轉 27 五、未來研究方向 30 陸、參考文獻 31 柒、附錄圖表 42

    Akiyama, H. (2016). "Development of disease-modifying therapy for Alzheimer’s disease." Brain Nerve 68(4): 463-472.
    Allan, S. M., P. J. Tyrrell and N. J. Rothwell (2005). "Interleukin-1 and neuronal injury." Nat Rev Immunol 5(8): 629-640.
    Bechade, C., S. Colasse, M. A. Diana, M. Rouault and A. Bessis (2014). "NOS2 expression is restricted to neurons in the healthy brain but is triggered in microglia upon inflammation." Glia 62(6): 956-963.
    Behairi, N., M. Belkhelfa, H. Mesbah-Amroun, H. Rafa, S. Belarbi, M. Tazir and C. Touil-Boukoffa (2015). "All-trans-retinoic acid modulates nitric oxide and interleukin-17A production by peripheral blood mononuclear cells from patients with Alzheimer’s disease." Neuroimmunomodulation 22(6): 385-393.
    Brunden, K. R., J. Q. Trojanowski and V. M. Lee (2009). "Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies." Nat Rev Drug Discov 8(10): 783-793.
    Butovsky, O., A. E. Talpalar, K. Ben-Yaakov and M. Schwartz (2005). "Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective." Mol Cell Neurosci 29(3): 381-393.
    Chang, K. H., Y. J. Chiu, S. L. Chen, C. H. Huang, C. H. Lin, T. H. Lin, C. M. Lee, C. Ramesh, C. H. Wu, C. C. Huang, H. C. Fung, Y. C. Chen, J. Y. Lin, C. F. Yao, H. J. Huang, G. J. Lee-Chen, M. C. Lee and H. M. Hsieh-Li (2016). "The potential of synthetic indolylquinoline derivatives for Abeta aggregation reduction by chemical chaperone activity." Neuropharmacology 101: 309-319.
    Chen, C. C., J. T. Lin, Y. F. Cheng, C. Y. Kuo, C. F. Huang, S. H. Kao, Y. J. Liang, C. Y. Cheng and H. M. Chen (2014). "Amelioration of LPS-induced inflammation response in microglia by AMPK activation." Biomed Res Int 2014: 692061.
    Demuro, A., M. Smith and I. Parker (2011). "Single-channel Ca(2+) imaging implicates Abeta1-42 amyloid pores in Alzheimer’s disease pathology." J Cell Biol 195(3): 515-524.
    Dikmen, M. (2017). "Comparison of the effects of curcumin and RG108 on NGF-induced PC-12 Adh cell differentiation and neurite outgrowth." J Med Food 20(4): 376-384.
    Du, Y., R. C. Dodel, B. J. Eastwood, K. R. Bales, F. Gao, F. Lohmuller, U. Muller, A. Kurz, R. Zimmer, R. M. Evans, A. Hake, T. Gasser, W. H. Oertel, W. S. T. Griffin, S. M. Paul and M. R. Farlow (2000). "Association of an interleukin 1 polymorphism with Alzheimer’s disease." Neurology 55(4): 480-484.
    Ferri, C. P., M. Prince, C. Brayne, H. Brodaty, L. Fratiglioni, M. Ganguli, K. Hall, K. Hasegawa, H. Hendrie, Y. Huang, A. Jorm, C. Mathers, P. R. Menezes, E. Rimmer and M. Scazufca (2005). "Global prevalence of dementia: a Delphi consensus study." Lancet 366(9503): 2112-2117.
    Glass, C. K., K. Saijo, B. Winner, M. C. Marchetto and F. H. Gage (2010). "Mechanisms underlying inflammation in neurodegeneration." Cell 140(6): 918-934.
    Gourmaud, S., C. Paquet, J. Dumurgier, C. Pace, C. Bouras, F. Gray, J. L. Laplanche, E. F. Meurs, F. Mouton-Liger and J. Hugon (2015). "Increased levels of cerebrospinal fluid JNK3 associated with amyloid pathology: links to cognitive decline." J Psychiatry Neurosci 40(3): 151-161.
    Goussakov, I., M. B. Miller and G. E. Stutzmann (2010). "NMDA-mediated Ca(2+) influx drives aberrant ryanodine receptor activation in dendrites of young Alzheimer’s disease mice." J Neurosci 30(36): 12128-12137.
    Guo, C., L. Yang, C. X. Wan, Y. Z. Xia, C. Zhang, M. H. Chen, Z. D. Wang, Z. R. Li, X. M. Li, Y. D. Geng and L. Y. Kong (2016). "Anti-neuroinflammatory effect of Sophoraflavanone G from Sophora alopecuroides in LPS-activated BV2 microglia by MAPK, JAK/STAT and Nrf2/HO-1 signaling pathways." Phytomedicine 23(13): 1629-1637.
    Hagemann, C. and J. L. Blank (2001). "The ups and downs of MEK kinase interactions." Cell Signal 13(12): 863-875.
    Hussaini, S. M. (2016)." Therapeutic significance of quinolines: a patent review (2013-2015)." Expert Opin Ther Pat 26(10): 1201-1221.
    Iqbal, K., F. Liu, C. X. Gong, C. Alonso Adel and I. Grundke-Iqbal (2009). "Mechanisms of tau-induced neurodegeneration." Acta Neuropathol 118(1): 53-69.
    Ishima, T., M. Iyo and K. Hashimoto (2012). "Neurite outgrowth mediated by the heat shock protein Hsp90alpha: a novel target for the antipsychotic drug aripiprazole." Transl Psychiatry 2: e170.
    Jha, M. K., W. H. Lee and K. Suk (2016). "Functional polarization of neuroglia: Implications in neuroinflammation and neurological disorders." Biochem Pharmacol 103: 1-16.
    Jin, N., H. Zhu, X. Liang, W. Huang, Q. Xie, P. Xiao, J. Ni and Q. Liu (2017). "Sodium selenate activated Wnt/beta-catenin signaling and repressed amyloid-beta formation in a triple transgenic mouse model of Alzheimer’s disease." Exp Neurol 297: 36-49.
    Kanazawa, H., K. Ohsawa, Y. Sasaki, S. Kohsaka and Y. Imai (2002). "Macrophage/microglia-specific protein Iba1 enhances membrane ruffling and Rac activation via phospholipase C-gamma -dependent pathway." J Biol Chem 277(22): 20026-20032.
    Kim, E. K. and E. J. Choi (2010). "Pathological roles of MAPK signaling pathways in human diseases." Biochim Biophys Acta 1802(4): 396-405.
    Kiyota, T., S. Okuyama, R. J. Swan, M. T. Jacobsen, H. E. Gendelman and T. Ikezu (2010). "CNS expression of anti-inflammatory cytokine interleukin-4 attenuates Alzheimer’s disease-like pathogenesis in APP+PS1 bigenic mice." FASEB J 24(8): 3093-3102.
    Kobayashi, K., S. Imagama, T. Ohgomori, K. Hirano, K. Uchimura, K. Sakamoto, A. Hirakawa, H. Takeuchi, A. Suzumura, N. Ishiguro and K. Kadomatsu (2013). "Minocycline selectively inhibits M1 polarization of microglia." Cell Death Dis 4: e525.
    Kumar, A., A. Singh and Ekavali (2015). "A review on Alzheimer’s disease pathophysiology and its management: an update." Pharmacol Rep 67(2): 195-203.
    Lee, M., E. McGeer and P. L. McGeer (2015). "Activated human microglia stimulate neuroblastoma cells to upregulate production of beta amyloid protein and tau: implications for Alzheimer’s disease pathogenesis." Neurobiol Aging 36(1): 42-52.
    Li, M., K. Pisalyaput, M. Galvan and A. J. Tenner (2004b). "Macrophage colony stimulatory factor and interferon-gamma trigger distinct mechanisms for augmentation of beta-amyloid-induced microglia-mediated neurotoxicity." J Neurochem 91(3): 623-633.
    Li, X. Q., J. W. Zhang, Z. X. Zhang, D. Chen and Q. M. Qu (2004a). "Interleukin-1 gene cluster polymorphisms and risk of Alzheimer’s disease in Chinese Han population." J Neural Transm (Vienna) 111(9): 1183-1190.
    Liu, J. and A. Lin (2005). "Role of JNK activation in apoptosis: a double-edged sword." Cell Res 15(1): 36-42.
    Liu, Q., Y. Hu, Y. Cao, G. Song, Z. Liu and X. Liu (2017). "Chicoric acid ameliorates lipopolysaccharide-induced oxidative stress via promoting the Keap1/Nrf2 transcriptional signaling pathway in BV-2 microglial cells and mouse brain." J Agric Food Chem 65(2): 338-347.
    Lonskaya, I., M. L. Hebron, S. T. Selby, R. S. Turner and C. E. H. Moussa (2015). "Nilotinib and bosutinib modulate pre-plaque alterations of blood immune markers and neuro-inflammation in Alzheimer’s disease models." Neuroscience 304: 316-327.
    Lu, Y., M. He, Y. Zhang, S. Xu, L. Zhang, Y. He, C. Chen, C. Liu, H. Pi, Z. Yu and Z. Zhou (2014). "Differential pro-inflammatory responses of astrocytes and microglia involve STAT3 activation in response to 1800 MHz radiofrequency fields." PLoS One 9(9): e108318.
    Lukacs, M., K. Warfvinge, L. S. Kruse, J. Tajti, F. Fulop, J. Toldi, L. Vecsei and L. Edvinsson (2016). "KYNA analogue SZR72 modifies CFA-induced dural inflammation- regarding expression of pERK1/2 and IL-1beta in the rat trigeminal ganglion." J Headache Pain 17(1): 64.
    Lynch, M. A. (2009). "The multifaceted profile of activated microglia." Mol Neurobiol 40(2): 139-156.
    Ma, D., Y. Doi, S. Jin, E. Li, Y. Sonobe, H. Takeuchi, T. Mizuno and A. Suzumura (2012). "TGF-beta induced by interleukin-34-stimulated microglia regulates microglial proliferation and attenuates oligomeric amyloid beta neurotoxicity." Neurosci Lett 529(1): 86-91.
    Majerova, P., M. Zilkova, Z. Kazmerova, A. Kovac, K. Paholikova, B. Kovacech, N. Zilka and M. Novak (2014). "Microglia display modest phagocytic capacity for extracellular tau oligomers." J Neuroinflammation 11(1): 161.
    Malm, T., M. Koistinaho, A. Muona, J. Magga and J. Koistinaho (2010). "The role and therapeutic potential of monocytic cells in Alzheimer’s disease." Glia 58(8): 889-900.
    Mangialasche, F., A. Solomon, B. Winblad, P. Mecocci and M. Kivipelto (2010). "Alzheimer’s disease: clinical trials and drug development." Lancet Neurol 9(7): 702-716.
    Matsumura, A., S. Suzuki, N. Iwahara, S. Hisahara, J. Kawamata, H. Suzuki, A. Yamauchi, K. Takata, Y. Kitamura and S. Shimohama (2015). "Temporal Changes of CD68 and alpha7 Nicotinic Acetylcholine Receptor Expression in Microglia in Alzheimer’s Disease-Like Mouse Models." J Alzheimers Dis 44(2): 409-423.
    Moreno-Gonzalez, I. and C. Soto (2011). "Misfolded protein aggregates: mechanisms, structures and potential for disease transmission." Semin Cell Dev Biol 22(5): 482-487.
    Munoz, L. and A. J. Ammit (2010). "Targeting p38 MAPK pathway for the treatment of Alzheimer’s disease." Neuropharmacology 58(3): 561-568.
    Park, S., J. J. Choi, B. K. Park, S. J. Yoon, J. E. Choi and M. Jin (2014). "Pheophytin a and chlorophyll a suppress neuroinflammatory responses in lipopolysaccharide and interferon-gamma-stimulated BV2 microglia." Life Sci 103(2): 59-67.
    Pasqualetti, G., D. J. Brooks and P. Edison (2015). "The role of neuroinflammation in dementias." Curr Neurol Neurosci Rep 15(4): 531.
    Pei, J. J., E. Braak, H. Braak, I. Grundke-Iqbal, K. Iqbal, B. Winblad and R. F. Cowburn (2001). "Localization of active forms of C-jun kinase (JNK) and p38 kinase in Alzheimer’s disease brains at different stages of neurofibrillary degeneration." J Alzheimers Dis 3(1): 41-48.
    Pimentel, L. S., S. Allard, S. Do Carmo, O. Weinreb, M. Danik, C. E. Hanzel, M. B. Youdim and A. C. Cuello (2015). "The multi-target drug M30 shows pro-cognitive and anti-inflammatory effects in a rat model of Alzheimer’s disease." J Alzheimers Dis 47(2): 373-383.
    Pirskanen, M., M. Hiltunen, A. Mannermaa, S. Iivonen, S. Helisalmi, M. Lehtovirta, A. M. Koivisto, M. Laakso, H. Soininen and I. Alafuzoff (2002). "Interleukin 1 alpha gene polymorphism as a susceptibility factor in Alzheimer’s disease and its influence on the extent of histopathological hallmark lesions of Alzheimer’s disease." Dement Geriatr Cogn Disord 14(3): 123-127.
    Rainero, I., M. Bo, M. Ferrero, W. Valfre, G. Vaula and L. Pinessi (2004). "Association between the interleukin-1alpha gene and Alzheimer’s disease: a meta-analysis." Neurobiol Aging 25(10): 1293-1298.
    Rangachari, V., B. D. Moore, D. K. Reed, L. K. Sonoda, A. W. Bridges, E. Conboy, D. Hartigan and T. L. Rosenberry (2007). "Amyloid-beta(1-42) rapidly forms protofibrils and oligomers by distinct pathways in low concentrations of sodium dodecylsulfate." Biochemistry 46(43): 12451-12462.
    Robinson, B., M. Schlumberger, L. J. Wirth, C. E. Dutcus, J. Song, M. H. Taylor, S. B. Kim, M. K. Krzyzanowska, J. Capdevila, S. I. Sherman and M. Tahara (2016). "Characterization of tumor size changes over time from the phase 3 study of lenvatinib in thyroid cancer." J Clin Endocrinol Metab 101(11): 4103-4109.
    Sakai, A., K. Takasu, M. Sawada and H. Suzuki (2012). "Hemokinin-1 gene expression is upregulated in microglia activated by lipopolysaccharide through NF-kappaB and p38 MAPK signaling pathways." PLoS One 7(2): e32268.
    Saklatvala, J., W. Davis and F. Guesdon (1996). "Interleukin 1 (IL1) and tumour necrosis factor (TNF) signal transduction." Philos Trans R Soc Lond B Biol Sci 351(1336): 151-157.
    Sawada, M., A. Suzumura, H. Hosoya, T. Marunouchi and T. Nagatsu (1999). "Interleukin-10 inhibits both production of cytokines and expression of cytokine receptors in microglia." J Neurochem 72(4): 1466-1471.
    Sclip, A., A. Tozzi, A. Abaza, D. Cardinetti, I. Colombo, P. Calabresi, M. Salmona, E. Welker and T. Borsello (2014). "c-Jun N-terminal kinase has a key role in Alzheimer disease synaptic dysfunction in vivo." Cell Death Dis 5: e1019.
    Shanks, G. D. (2016). "Historical Review: Problematic Malaria Prophylaxis with Quinine." Am J Trop Med Hyg 95(2): 269-272.
    Slater, A. F. (1993). "Chloroquine: mechanism of drug action and resistance in Plasmodium falciparum." Pharmacol Ther 57(2-3): 203-235.
    Song, F., K. Zeng, L. Liao, Q. Yu, P. Tu and X. Wang (2016). "Schizandrin A inhibits microglia-mediated neuroninflammation through inhibiting TRAF6-NF-kappaB and Jak2-Stat3 signaling pathways." PLoS One 11(2): e0149991.
    Song, J., S. Y. Cheon, W. Jung, W. T. Lee and J. E. Lee (2014). "Resveratrol induces the expression of interleukin-10 and brain-derived neurotrophic factor in BV2 microglia under hypoxia." Int J Mol Sci 15(9): 15512-15529.
    Steiner, N., R. Balez, N. Karunaweera, J. M. Lind, G. Munch and L. Ooi (2016). "Neuroprotection of Neuro2a cells and the cytokine suppressive and anti-inflammatory mode of action of resveratrol in activated RAW264.7 macrophages and C8-B4 microglia." Neurochem Int 95: 46-54.
    Sun, A., M. Liu, X. V. Nguyen and G. Bing (2003). "P38 MAP kinase is activated at early stages in Alzheimer’s disease brain." Exp Neurol 183(2): 394-405.
    Sunkaria, A., S. Bhardwaj, A. Halder, A. Yadav and R. Sandhir (2016). "Migration and phagocytic ability of activated microglia during post-natal development is mediated by calcium-dependent purinergic signalling." Mol Neurobiol 53(2): 944-954.
    Tang, Y. and W. Le (2016). "Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases." Mol Neurobiol 53(2): 1181-94.
    Thakur, A., X. Wang, S. L. Siedlak, G. Perry, M. A. Smith and X. Zhu (2007). "c-Jun phosphorylation in Alzheimer disease." J Neurosci Res 85(8): 1668-1673.
    Xiao, L., M. Ding, A. Fernandez, P. Zhao, L. Jin and X. Li (2017). "Curcumin alleviates lumbar radiculopathy by reducing neuroinflammation, oxidative stress and nociceptive factors." Eur Cell Mater 33: 279-293.
    Yin, R., K. Yin, Z. Guo, Z. Zhang, L. Chen, L. Cao, Y. Li, Y. Wei, X. Fu and X. Shi (2016). "Protective Effects of Colivelin Against Alzheimer’s Disease in a PDAPP Mouse Model." Cell Physiol Biochem 38(3): 1138-1146.
    Zhang, B., Y. Zhang, T. Xu, Y. Yin, R. Huang, Y. Wang, J. Zhang, D. Huang and W. Li (2017a). "Chronic dexamethasone treatment results in hippocampal neurons injury due to activate NLRP1 inflammasome in vitro." Int Immunopharmacol 49: 222-230.
    Zhang, D. X., L. M. Zhang, X. C. Zhao and W. Sun (2017b). "Neuroprotective effects of erythropoietin against sevoflurane-induced neuronal apoptosis in primary rat cortical neurons involving the EPOR-Erk1/2-Nrf2/Bach1 signal pathway." Biomed Pharmacother 87: 332-341.
    Zhang, F. and L. Jiang (2015). "Neuroinflammation in Alzheimer’s disease." Neuropsychiatr Dis Treat 11: 243-256.
    Zhou, Q., M. Wang, Y. Du, W. Zhang, M. Bai, Z. Zhang, Z. Li and J. Miao (2015). "Inhibition of c-Jun N-terminal kinase activation reverses Alzheimer disease phenotypes in APPswe/PS1dE9 mice." Ann Neurol 77(4): 637-654.
    Zhu, Y., H. Hou, K. Rezai-Zadeh, B. Giunta, A. Ruscin, C. Gemma, J. Jin, N. Dragicevic, P. Bradshaw, S. Rasool, C. G. Glabe, J. Ehrhart, P. Bickford, T. Mori, D. Obregon, T. Town and J. Tan (2011). "CD45 deficiency drives amyloid-beta peptide oligomers and neuronal loss in Alzheimer’s disease mice." J Neurosci 31(4): 1355-1365.
    Zilka, N., Z. Kazmerova, S. Jadhav, P. Neradil, A. Madari, D. Obetkova, O. Bugos and M. Novak (2012). "Who fans the flames of Alzheimer’s disease brains? Misfolded tau on the crossroad of neurodegenerative and inflammatory pathways." J Neuroinflammation 9: 47.

    無法下載圖示 本全文未授權公開
    QR CODE