簡易檢索 / 詳目顯示

研究生: 周健平
Jian-Ping Chou
論文名稱: 低功率鎖相迴路與電壓控制振盪器之設計與實現
Design and Implementation of Low-Power Phase-Locked Loop and Voltage Control Oscillator
指導教授: 蔡政翰
Tsai, Jen-Han
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 125
中文關鍵詞: 5GHz頻段鎖相迴路CMOS變壓器回授之電壓控制振盪器K-Band低功耗CMOS變壓器回授之電壓控制振盪器
英文關鍵詞: 5.568 GHz Phase-locked loop, CMOS, Transformer-Feedback VCO, K-band low power CMOS transformer-feedback VCO
論文種類: 學術論文
相關次數: 點閱:295下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著無線通訊產業蓬勃發展,高速率傳輸資料是必需的。然而在無線通訊系統中需要穩定且乾淨的振盪源。因此鎖相迴路是相當重要的角色。本論文使用了TSMC CMOS 0.18-µm製程實現可操作在5.568 GHz頻段上的鎖相迴路以及使用TSMC CMOS 90-nm製程實現在K-band頻段上的變壓器回授之電壓控制振盪器。在這次設計操作在5.568 GHz頻段上的鎖相迴路過程中,我們使用低功耗的真單向相位時脈(True Single Phase Clock, TSPC)與低電壓操作的變壓器回授之電壓控制振盪器來達到節省功耗之效果。
    本論文依序說明了應用於K-Band低功耗CMOS變壓器回授之電壓控制振盪器與鎖相迴路,分別在第三章與第四章呈現。在第三章實現出了一個低電壓且操作在K頻段上的電壓控制振盪器,其功率消耗為1 mW。其相位雜訊為-95.37 dBc/Hz @ 1 MHz。第四章設計了一個操作在5GHz頻段上的鎖相迴路,整體的功率消耗約為9.23 mW,其相位雜訊為-106.23 dBc/Hz @ 1 MHz與-121.63 dBc/Hz @ 10 MHz。

    With the rapid growth of wireless communication system, the high speed data-rate is required. For wireless communication applications, a stable and clean local oscillator is required. Therefore, phase-locked loop is a key component in wireless transceiver. In addition, due to the limitation of battery capacity for handheld device, the low-power is an important design issue. In this thesis, a low power phase-locked loop and a K-band low power CMOS transformer-feedback voltage control oscillator are presented by using TSMC CMOS 0.18-µm and 90-nm process, respectively.
    This thesis implements a K-band transformer-feedback voltage controlled oscillator and phase-locked loop in chapter 3 and chapter 4, respectively. The K-band transformer-feedback voltage controlled oscillator is presented in chapter 3. The power consumption and the phase noise of the frequency synthesizer are 1 mW and -95.37 dBc/Hz at 1 MHz offset, respectively. In chapter 4, a 5.568 GHz phase-locked loop is presented, which power consumption is 9.23 mW and measured phase noise is -106.23 dBc/Hz at 1 MHz offset.

    第一章 緒論 1 1.1 研究背景與動機 1 1.2 論文架構 1 第二章 鎖相迴路的基本觀念 3 2.1 相位頻率偵測器(Phase Frequency Detector, PFD) 4 2.2 充電泵(Charge Pump, CP) 10 2.3 迴路濾波器(Loop Filter, LP) 16 2.4 頻率除頻器(Frequency Divider, FD) 18 2.5 電壓控制振盪器(Voltage Control Oscillator, VCO) 19 2.6鎖相迴路分析 20 第三章 應用於K-Band低功耗變壓器回授之低電壓電壓控制振盪器設計與實現 29 3.1 電壓控制振盪器簡介 29 3.1.1 電壓控制振盪器應用 29 3.1.2 振盪原理 30 3.1.3 電壓控制振盪器比較 31 3.2 相位雜訊(Phase Noise)定義 32 3.3 LC振盪器電路設計 36 3.4 LC振盪器分析 37 3.5在LC壓控振盪器的被動元件 39 3.5.1 電感(Inductance) 39 3.5.2 變容器(Varactor) 44 3.6電路架構比較 47 3.7 K-Band低功耗變壓器回授之電壓控制振盪器電路分析 48 3.8 K-band低功耗變壓器回授之電壓控制振盪器電路設計 51 3.8.1 三線圈變壓器與變容器模擬 52 3.8.2 K-band低功耗變壓器回授之電壓控制振盪器模擬結果 54 3.9 K-band低功耗變壓器回授之電壓控制振盪器量測結果 57 3.10 結果與討論 59 第四章 低功耗鎖相迴路之設計與實現 67 4.1 簡介 67 4.2 架構與電路設計 68 4.2.1 相位頻率偵測器 68 4.2.2 充電泵 73 4.2.3 三階低通濾波器 77 4.2.4 電壓控制振盪器 77 4.2.5 除頻器 81 4.2.6 鎖相迴路系統 83 4.3低功耗鎖相迴路模擬結果 85 4.3.1相位頻率偵測器與充電泵 86 4.3.2變壓器與變容器的模擬 86 4.3.3變壓器回授之電壓控制振盪器的模擬結果 90 4.3.4 除頻器 92 4.3.3 鎖相迴路系統模擬 94 4.4 低功耗鎖相迴路的量測結果 98 4.5結果與討論 107 第五章 結論 115 參考文獻…………………………………………………………………………….117 作者簡歷…………………………………………………………………………….123 學術成就……………………………………………………………………………125

    [1] Floyd M. Gardner, Phaselock Techniques, 2-th Ed., New York : Wiley & Sons, 1979.
    [2] Roland E. Best, Phase-Locked Loops, 2-th Ed., New York : McGraw-Hill, 1993.
    [3] Behzad Razavi, Monolithic Phase-Locked Loops and Clock Recovery Circuit : theory and design, New York: IEEE press, 1996.
    [4] Mozhgan Mansuri, Dean Liu, and Chih-Kong Ken Yang, “Fast frequency acquisition phase-frequency detectors for Gsamples/s phase-locked loops,” IEEE J. Solid-State Circuits, vol. 37, no. 10, pp. 1331-1334, Oct. 2002.
    [5] Woogeun Rhee, “Design of high performance CMOS charge pump in phase locked loop,” in Proc. IEEE Int. Symp. Circuits and Systems, 1999, pp. 545-548.
    [6] Geoger Wegmann, Eric A. Vittoz, and Fouad Rahali, “Charge injection in analog MOS switches,” IEEE J. Solid-State Circuits, vol. 22, no. 6, pp. 1091-1097, Dec. 1987.
    [7] Behzad Razavi, Design of Analog Integrated Circuits, McGraw-Hill Companies, 1st, Boston: McGraw-Hill, 2001.
    [8] Bing J. Sheu and Chenming Hu, “Switch-induced error voltage on a switched capacitor,” IEEE J. Solid-State Circuits, vol. 19, no. 6, pp. 519-525, Aug. 1984.
    [9] Mark Van Paemel, “Analysis of a charge-pump PLL: A new model,” IEEE Trans. Commun., vol. 42, no.7, pp. 2490-2498, July 1994.
    [10] Floyd M. Gardner, “Charge-pump phase-lock loops,“ IEEE Trans. Commun., vol. 28, no. 11, pp. 1849-1858, Nov. 1980.
    [11] William O. Keese, “An analysis and performance evaluation of a passive filter design techniques for charge pump PLL’s,” National Semiconductor application note 1001, July 2001.
    [12] 劉深淵,楊清淵, 鎖相迴路, 滄海書局, 2006.
    [13] William O. Keese, “An analysis and performance evaluation of a passive filter design techniques for charge pump PLL’s,” National Semiconductor application note 1001, May 1996.
    [14] 于宗仁, “應用在HDTV/ITV寬頻帶射頻調諧器及900-MHz/2.4-GHz無線通訊之
    頻率合成器的設計,” 國立成功大學電機工程研究所碩士論文, 民國八十六年。
    [15] Ali Hajimiri, and Thomas H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
    [16] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, pp. 329-330, Feb. 1966.
    [17] H. G. Booker, Energy in Electromagnetism, London, New York: Peter Peregrinus, 1982.
    [18] C. Patrick Yue, and S. Simon Wang, “On-chip spiral inductors with patterned ground shields for Si-based RF IC’s,” IEEE J. Solid-State Circuits, vol. 33, no.5, pp. 743-752, May 1998.
    [19] Alireza Zolfaghari, Andrew Chan, and Behzad Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, Apr. 2001.
    [20] Jan Craninckx, and Michiel S. J. Steyaert, “A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol.32, no. 5, pp. 736-744, May 1997.
    [21] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Trans. Parts, Hybrids, Packag., vol. 10, no.2, pp. 101-109, June 1974.
    [22] Chia-Hsin Wu, “CMOS miniature 3D inductors and low noise amplifier,” M.S. thesis, National Taiwan University, June 2001.
    [23] Chia-Hsin Wu, Chun-Yi Kuo, and Shen-Iuan Liu, “Selective metal parallel shunting inductor and its VCO application,” in Symp. VLSI Circuits Dig. Technical Papers, June 2003, pp. 37-40.
    [24] KaChun Kwok, and Howard C. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,” IEEE J. of Solid-State Circuits, vol. 40, no. 3, March 2005.
    [25] Pietro Andreani and Sven Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE J. of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
    [26] Theerachet Soorapanth, C. Patrick Yue, Derek K. Shaeffer, Thomas H. Lee, S. Simon Wong, “Analysis and optimization of accumulation-mode varactor for RF ICs” in Symp. VLSI Circuits Dig. Technical Papers, June 1998, pp. 32-33.
    [27] A. R. Kral, “A 2.4GHz frequency synthesizer in 0.6-μm CMOS,” M.S. thesis, University of California Los Angeles, March 1998.
    [28] J. Craninckx and M. Steyaert, Wireless CMOS Frequency Synthesizer Design, London, U.K.: Kluwer, 1998.
    [29] Marc Tiebout, “Low-power low-phase-noise differentially tuned quadrature VCO design in standard CMOS,” IEEE J. of Solid-State Circuits, vol. 36, no. 7, pp. 1018-1024, July 2001.
    [30] Chi-Kai Hsieh, Kun-Yao Kao, and Kun-You Lin, “An ultra-low-power CMOS complementary VCO using three-coil transformer feedback,” in 2009 IEEE Radio Frequency Integrated Circuits (RFIC) Symp., June 2009, pp. 7-9.
    [31] KaChun Kwok, and Howard C. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,” IEEE J. of Solid-State Circuits, vol. 40, no. 3, pp. 652-660, Mar 2005.
    [32] B. Jung, and R. Harjani, “A 20GHz VCO with 5GHz tuning range in 0.25-μm SiGe BiCMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2004, pp. 178-179.
    [33] Hsieh-Hung Hsieh, and Liang-Hung Lu, “A low-phase-noise K-band CMOS VCO,” IEEE Microwave Wireless Compon. Lett., vol. 16, no. 10, pp. 552-554, Oct. 2006.
    [34] Jaemo Yang, Choul-Young Kim, Dong-Wook Kim, and Songcheol Hong, “Design of a 24-GHz CMOS VCO with an asymmetric-width transformer,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 3, pp. 173-177, Mar. 2010.
    [35] To-Po Wang, “A K-band low-power colpitts VCO with voltage-to-current positive-feedback network in 0.18-μm CMOS,” IEEE Microwave Wireless Compon. Lett., vol. 21, no. 4, pp. 218-220, Apr. 2011.
    [36] Szu-Ling Liu, Xin-Cheng Tian, Yue Hao, and Albert Chin, “A bias-varied low-power K-band VCO in 90 nm CMOS technology,” IEEE Microwave Wireless Compon. Lett., vol. 22, no. 6, pp. 321-323, June. 2012.
    [37] Ian A. Young, Jeffrey K. Greason, and Keng L. Wong, “A PLL clock generator with 5 to 110 MHz of lock rang for microprocessors,” IEEE J. of Solid-State Circuits, vol. 27, pp. 1599-1607, Nov. 1992.
    [38] Dejan Mijuskovic, Martin Bayer, Thecla Chomicz, Nitin Garg, Frederick James, Philip McEntarfer, and Jeff Porter, “Cell-based fully integrated CMOS frequency synthesizers,” IEEE J. of Solid-State Circuits, vol. 27, pp. 271-279, Mar. 1994.
    [39] Ilya I. Novof, John Austin, Ram Kelkar, Don Strayer, and Steve Wyatt, “Fully integrated CMOS phase-locked loop with 15 to 240 MHz locking range and ±50ps jitter,” IEEE J. of Solid-State Circuits, vol. 30, pp. 1723-1732, Nov. 1996.
    [40] J.-R. Yuan, and C. Svensson, “Fast CMOS nonbinary divider and counter,” Electronics Letters, vol. 29, pp. 1222-1223, June 1993.
    [41] Jiren Yuan, and Christer Svensson, “High speed CMOS circuit technique,” IEEE J. of Solid-State Circuits, vol. 24, pp. 62-70, Feb. 1989.
    [42] Rola A. Baki, and , Mourad N. El-Gamal, “A new CMOS charge pump for low-voltage (1V) high-speed PLL applications,” in Proceedings of International Symposium on Circuits and Systems ISCAS’03., vol. 1, pp. 25-28, May 2003.
    [43] Manthena Vamshi Krishna, Manh Anh Do, Kiat Seng Yeo, Chirn Chye Boon, and Wei Meng Lim, “Design and analysis of ultra low power true single phase clock CMOS 2/3 prescaler,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 1, pp.72-82, Jan. 2010.
    [44] Dong-Jun Yang, and Kenneth K. O, “A 14-GHz 256/257 dual-modulus prescaler with secondary feedback and its application to a monolithic CMOS 10.4-GHz phase-locked loop,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 2, pp 461-468, Feb. 2004.
    [45] Ming-Wei Li, Po-Chi Wang, Tzuen-Hsi Huang, and Huey-Ru Chuang, “Low-voltage, wide-locking-range, millimeter-wave divide-by-5 injection-locked frequency dividers,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 679-685, Mar. 2012.
    [46] Jae-Hong Chang, Yong-Sik Youn, Mun-Yang Park, and Choong-Ki Kim, “A new 6GHz fully integrated low power low phase noise CMOS LC quadrature VCO,” in 2003 IEEE Radio Frequency Integrated Circuits (RFIC) Symp., June 2003, pp. 295-298.
    [47] Giuseppe De Astis, David Cordeau, Jean-Marie Paillot, and Lucian Dascalescu, “A 5-GHz fully integrated full PMOS low-phase-noise LC VCO,” IEEE J. of Solid-State Circuits, vol. 40, no. 10, pp. 2087-2091, Oct. 2005.
    [48] Dan Shi, Jack East, and Michael P. Flynn, “A compact 5GHz standing-wave resonator-based VCO in 0.13-μm CMOS,” in 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symp., June 2007, pp. 591-594.
    [49] Kuan-Chung Lu, Fu-Kang Wang, and Tzyy-Sheng Horng, “Ultralow phase noise and wideband CMOS VCO using symmetrical body-bias PMOS varactors,” IEEE Microwave Wireless Compon. Lett., vol. 23, no. 2, pp. 90-92, Feb. 2013.
    [50] Ping Lu, Danfeng Chen, Fan Ye, and Junyan Ren, “A 5.4GHz wide tuning range CMOS PLL using an auto-calibration multiple-pass ring oscillator,” in 2009 IEEE SOCC Symp., Sep. 2009, pp. 39-42.
    [51] Wei-Hao Chiu, Tai-Shun Chan, and Tsung-Hsien Lin, “A 5.5-GHz 16-mW fast-locking frequency synthesizer in 0.18-μm CMOS,” in Proc. IEEE A-SSCC, Nov. 2007, pp. 456-459.
    [52] Chih-Ming Hung, and Kenneth K. O, “A fully integrated 1.5-V 5.5-GHz CMOS phase-locked loop,” IEEE J. of Solid-State Circuits, vol. 37, no. 4, pp. 521-525, Apr. 2002.
    [53] S. Pllerano, S. Levantino, C. Samori, and A. L. Lacaita, “A 13.5-mW 5-GHz frequency synthesizer with dynamic-logic frequency divider,” IEEE J. of Solid-State Circuits, vol. 39, no. 2, pp. 378-383F, Feb. 2004.
    [54] Sho Ikeda, Tatsuya Kamimura, Sangyeop Lee, Hiroyuki Ito, Noboru Ishihara, and Kazuya Masu, “A sub-1mW 5.5-GHz PLL with digitally-calibrated ILFD and linearized varactor for low supply voltage operation,” in 2014 IEEE Radio Frequency Integrated Circuits (RFIC) Symp., June 2014.
    [55] Ulrich L. Rohde, Digital PLL Frequency Synthesizers: Theory and Design, Englewood Cliffs, NJ: Prentice-Hall, 1983.
    [56] Behzad Razavi, RF Microelectronics, 2-th Ed., NJ : Prentice Hall, 2011.
    [57] 施宏達, “應用於X頻段之鎖相迴路與頻率合成器之設計與實現,” 國立臺灣師範大學應用電子科技學系研究所碩士論文, 民國一百零一年。
    [58] 黃敏, “具變壓器回授電流重複使用之Q-band低雜訊放大器與低功耗ΔΣ分數型頻率合成器之設計與分析,” 國立臺灣大學電信工程學研究所碩士論文, 民國一百零一年。

    下載圖示
    QR CODE