研究生: |
羅英元 |
---|---|
論文名稱: |
台灣產溪狡蛛(跑蛛科,狡蛛屬)之族群遺傳及親緣地理關係之探討 Study on population genetic structure and phylogeography of Dolomedes raptor (Araneae, Pisauridae) in Taiwan |
指導教授: | 陳世煌 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 親緣地理 、族群遺傳結構 、基因交流 、族群分化 、溪狡蛛 |
英文關鍵詞: | phylogeography, population genetic structure, gene flow, population differentiation, Dolomedes raptor |
論文種類: | 學術論文 |
相關次數: | 點閱:215 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
地理隔離造成生物族群間的分化,一直是近年來生物學上亟欲探討的問題之一。台灣的中央山脈地形崎嶇且縱貫台灣,加上河流東西走向的切割,對於台灣許多物種而言都是天然的地理屏障。由於台灣的蜘蛛學研究處於剛起步階段,對於蜘蛛是否會因台灣地形的阻隔而有族群分化的現象,仍須進一步探討。溪狡蛛(Dolomedes raptor Bösenberg & Strand, 1906)為一中大型蜘蛛,廣泛分布於台灣中低海拔各地,平時不結網,棲息環境侷限於溪流、溪澗等有流水的環境。一般認為許多昆蟲和蜘蛛具有良好的擴散能力而較不易被地形所阻隔,但溪狡蛛由於生活環境侷限、加上沒有牽絲空飄的行為,種種特性顯示其擴散能力不佳,因此可能受到台灣地形隔離而影響族群間的交流,正好適合作為探討族群遺傳以及親緣地理的材料。
本研究利用粒線體中cytochrome oxidase subunit I(COI)部分序列來進行族群遺傳結構之探討,共分析了21個樣點、153隻個體,取得序列長度617bp,包括34個變異位點、23個基因型。由AMOVA分析得知台灣地區溪狡蛛的遺傳結構在族群間有顯著的差異,由neighbor-joining以及maximum parsimony親緣關係樹型圖皆顯示可將台灣地區溪狡蛛分為北部、中南部和東部三大系群,除了中部和南部、中部和中北部族群間的遺傳分化指數較低(FST = 0.10299~ 0.26042)之外其餘族群間遺傳分化指數都偏高,特別是東部與其他族群間的遺傳分化指數皆大於0.79,顯示台灣地區溪狡蛛族群間基因交流受到山脈和水系的阻隔而有類似台灣一些初級性淡水魚「區域性分化」的現象,表示溪狡蛛的分化模式和人面蜘蛛這類結網性、具有良好擴散能力的物種截然不同。中部和南部族群間的基因交流順暢,推測和中南部地勢平坦、水系複雜以及人工渠道的開鑿有關。
由minimum spanning network顯示東部族群是由北部擴散而來,且遺傳多樣性較低,推測過去曾受到強烈瓶頸效應和創始者效應的影響。
溪狡蛛大多分布在中央山脈以西且和生活習性相似的褐腹狡蛛少有共域棲息的現象,推測可能因為溪狡蛛較不適應東部湍急溪流、以及擴散到東部不易等因素所造成。溪狡蛛已有顯著遺傳結構的分化,因此棲地的保存仍為當務之急。
The Central Mountain Range (CMR) and rivers in Taiwan form a natural geographic barrier for many organisms. However, study of Araneae is insufficient in Taiwan. We would investigate the differentiation of spiders that were resulted from geographic barriers in Taiwan. Generally we regard that many spiders and insects possess strongly dispersal ability. However, Dolomedes raptor may have weak dispersal ability resulting from their habitats restricted in the streams or creeks, without the ballooning behavior, and their distribution limited at low or medium elevations. Therefore, the gene flow between populations of D. raptor may be prohibited by the geographic barriers in Taiwan. Therefore, I chose D. raptor to investigate the population genetics and phylogeography of Taiwan.
The partial sequence of mtDNA cytochrome oxidase subunitⅠ(COI) was used as a genetic marker for these purpose in this study. Totally, 153 specimens were obtained from 21 localities in Taiwan. The length of sequenced COI gene was 617bp, including 34 polymorphism sites and 23 haplotypes. Analysis of AMOVA indicates that genetic structures are different significantly among populations. Phylogenetic trees generated from both the NJ and MP methods showed that D. raptor in Taiwan could be grouped into three major lineages, namely northern, eastern and central-southern lineages. All the FST values are high between populations, except for those between the central and southern, the central and central-northern populations (FST =0.10299~0.26042). Additionally, the east population has the highest FST when compare to any other populations. It indicates populations of D. raptor in Taiwan exhibited genetic differentiation that are resulted from both isolations by the mountains and the lands between basins. The differentiation model of D. raptor is similar to that of primary freshwater fishes, but not Nephila pilipes, an orb-web spider, with strongly dispersal ability. Moreover, the gene flow between south and contral populations was not isolated. It might be resulted from the southern and central parts of Taiwan that have a smooth topology, with complex drainage systems for agriculture and are frequently irrigated by the people.
Minimum spanning network showed that the eastern population was derived from the northern population. However, the genetic diversity in eastern population showed low indicates that it might have undergone the strong founder event and the bottleneck effect.
Most D. raptor populations are distributed in the western Taiwan, and had less sympatric habitats with D. mizhoanus. I consider the phenomenon was due to the microhabitat selection and the strongly geographical barriers for D. raptor to move in the eastern Taiwan.
Avise, J. C. 2000. Phylogeography : The history and formation of species. Harvard University Press, Cambridge.
Ayoub, N. A., and S. E. Riechert. 2004. Molecular evidence for Pleistocene glacial cycles driving diversification of a North American desert spider, Agelenopsis aperta. Molecular Ecology 13 : 3453-3465.
Brower, A. 1994. Rapid morphological radiation and convergence among races of the butterfly Heliconious erato inferred from patterns of mitochondrial DNA evolution. Proceeding of the National Academy of Sciences USA 99 : 6491-6495.
Chen, K. C., and I. M. Tso. 2004. Spider diversity on Orchid Island, Taiwan:a comparison between habitats receiving different degrees of human disturbance. Zoological Studies 43(3): 598-611.
Colgan, D. J., S. Brown, R. E. Major, F. Christie, M. R. Gray, and G. Cassis. 2002. Population genetics of wolf spiders of fragmented habitat in the wheat belt of New South Wales. Molecular Ecology 11 : 2295- 2305.
Crandall, K. A. and A. R. Templeton. 1993. Empirical tests of some predictions from coalescent theory with applications to intraspecies phylogeny reconstructure. Genetics 134 : 959-969.
Creer, S., A. Malhotra, R. S. Thorpe, and W. H. Chou. 2001. Multiple causation of phylogeographical pattern as revealed by nested clade analysis of the bamboo viper(Trimeresurus stejnegeri)within Taiwan. Molecular Ecology 10 : 1967-1981.
Crew, S. and M. Hedin. 2006. Studies of morphological and molecular phylogenetic divergence in spiders(Araneae:Homalonychus)from the American southwest, including divergence along the Baja California Peninsula. Molecular Phylogenetics and Evolution 38 : 470-487.
Excoffier, L., P. E. Smouse, and J. M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes : application to human mitochondrial DNA restriction data. Genetics 131 : 479-491.
Excoffier, L. and P. E. Smouse. 1994. Using allele frequencies and geographic subdivision to reconstruct gene tree within a species : molecular variance parsimony. Genetics 136 : 343-359.
Fang K., C. C. Yang, B. W. Kue, S. H. Chen, and K. Y. Lue. 2000. Phylogenetic corroboration of superfamily Lycosoidea spiders (Araneae)as inferred from partial mitochondrial 12S and 16S ribosomal DNA sequences. Zoological studies 39(2): 107-113.
Felsenstein, J. 1985. Confidence limits on phylogenies:an approach using the bootstrap. Evolution 39(4): 783-791.
Folmer, O., M. Black, W. Hoeh, R. Lutz, and R. Vrijenhoek. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3 : 294-299.
Garb, J. E., A. Gonzalez, and R. G. Gillespie. 2003. The black widow spider genes Latrodectus(Araneae:Theridiidae):phylogeny, biogeography, and invasion history. Molecular Phylogenetic and Evolution 31(3): 1127-1142.
Gemmell, N. J. and S. Akiyama. 1996. An efficient method for the extraction of DNA from vertebrate tissues. Trends in Genetics 12 : 338-339.
Gillespie, R. G., H. B. Croom, and S. R. Palumbi. 1994. Multiple origins of a spider radiation in Hawaii. Proceedings of the National Academy of Sciences 91 : 2290–2294.
Grant, W. A. S. and B. W. Bowen. 1998. Shallow population histories in deep evolutionary lineages of marine fishes : insights from sardines and anchovies and lessons for conservation. Heredity 89 : 415-426.
Graur, D. and W. H. Li. 2000. Fundamentals of molecular evolution. Sinauer Associates, Inc. U.S.A.
Greenstone, M. H., C. E. Morgan, A. L. Hultsch, R. A. Farrow, and J. E. Dowse. 1987. Ballooning spiders in Missouri, USA and New South Wales, Australia : family landmass distribution. The Journal of Arachnology 15 : 163-170.
Hedin, M. C. 2001. Molecular insights into species phylogeny, biogeography, and morphological stasis in the ancient spider genus Hypochilus(Araneae:Hypochilidae). Molecular Phylogenetics and Evolution 18(2): 238-251.
Hedin, M. C., and W. P. Maddison. 2001. A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphanitinae(Araneae:Salticidae). Molecular Phylogenetics and Evolution 18 : 386-403.
Hedrick, P. W. 1999. Highly variable loci and their interpretation in evolution and conservation. Evolution 53:313-318.
Hsu, F. H., F. J. Lin, and Y. S. Lin. 2000. Phylogeographic variation in mitochondrial DNA of Formosan white-bellied rat Niviventer cultruatus. Zoological Studies 39 : 38-46.
Hsu, F. H., F. J. Lin, and Y. S. Lin. 2001. Phylogeographic structure of the Formosan wood mouse, Apodemus semotus Thomas. Zoological Studies 40 : 91-102.
Hudson, R. R., M. Slatkin, and W. P. Maddison. 1992. Estimation of levels of gene flow from DNA sequence data. Genetics. 132 : 583-589.
Jean, C. T., S. C. Lee, C. T. Chen, and C. F. Hui. 1998. Variation in mitochondrial DNA sequences of black porgy, Acanthopagrus schlegeli, in the coastal water of Taiwan. Zoological Studies 37(1): 22-30.
Kimura, M. 1980. A simple method of estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequence. Journal of Molecular evolution 16 : 111-120.
Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, MA.
Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3:integrated software for molecular evolution genetics analysis and sequence alignment. Briefings in Bioinformatics 5:150-163.
Lee, J. W., L. Jiang, Y. C. Su, and I. M. Tso. 2004. Is Central Mountain Range a geographic barrier to the giant wood spider Nephila pilipes(Aranea : Tetragnathidae)in Taiwan?A population genetic approach. Zoological Studies 43(1): 112-122.
Marc, P., A. Canard, and F. Ysnel. 1999. Spiders(Araneae)useful for pest limitation and bioindication. Agriculture Ecosystems and Environment 74 : 229-273.
Moritz, C. 1999. conservation units and translocation : strategies for conserving evolutionary process. Heredity 130 : 217-228.
Nei, M. 1987. Molecular evolution genetics. Columbia University Press, New York.
Nibouche, S., R. Buès, J. F. Toubon, and S. Poitout. 1998. Allozyme polymorphism in the cotton bollworm Helicoverpa armigera(Lepidoptera:Noctuidae):comparison of African and European populations. Heredity 80 : 438-445.
Nyffeler, M. 2000. Ecological impact of spider predation : a critical assessment of Bristowe’s and Turnbull’s estimates. Bulletins of British Arachnological Society 11 : 367-373.
Pianka, E. R. 1974. Niche overlap and diffuse competition. Proceeding of the National Academy of Sceiences USA. 71 : 2141-2145.
Platnick, N. I. 2007. The world spider catalog, version 7.5. American Museum of Natural History, online at http://reserch.amnh.org/ entomology/spiders /catalog/.
Ramirez, M. G., and K. E. Haakonsen. 1999. Gene flow among habitat patches on a fragmented landscape in the spider Argiope trifasciata(Araneae : Araneidae). Heredity 83 : 580-585.
Riechert, S. E., T. Lockley. 1984. Spiders as biological control agents. Annuals Review of Entomology 29 : 299-320.
Roderick, G. K. 1996. Geographic structure of insect populations : gene flow, phylogeography, and their uses. Annual Review of Entomology 41 : 325-352.
Rozas, I. and R. Rozas. 1999. DnaSP version 3 : an integrated program for molecular population genetics and molecular evolution analysis. Bioformatics 15 : 174-175.
Rozas, J., J. C. Sanchez-DelBarrio, X. Messenguer, and R. Rozas. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioformatics 19 : 2496-2497.
Saitou, N, and M. Nei. 1987. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4 : 406-425.
Schneider, S., D. Roessli, and L. Excoffier. 2000. ARLEQUIN 2.0:A software for population genetic data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.
Simon, C., F. Frati, A. Beckenbach, B. Crespi, H. Liu, and P. Flook. 1994. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annuals of the Entomological Society of America 87 : 651- 701.
Shih, H. T., H. C. Hung, C. D. Schubart, C. A. Chen, and H. W. Chang. 2006. Intraspecific genetic diversity of the endemic freshwater crab Candidiopotamon rathbunae(Decapoda, Brachyura, Potamidae)reflects five million years of geological history of Taiwan. Journal of Biogeography 33 : 980-989.
Slatkin, M. 1985. Gene flow in natural populations. Annuals Review of Ecology and Systematics 16 : 393-430.
Swofford, D.L, 2002. PAUP*. Phylogenetic analysis using parsimony(*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.
Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis of DNA polymorphism. Genetics 123 : 585-595.
Toda, M., M. N. Matsui, K. Y. Lue, and H. Ota. 1998. Genetic variation in the Indian rice frog, Rana limnocharis(Amphibia:Anura)in Taiwan, as revealed by allozyme data. Herpetologica 54:73-82.
Tzeng, C. S. 1986. Distribution of the freshwater fishes of Taiwan. Journal of Taiwan Museum 39 : 127-146.
Vink, C. J., and A. M. Paterson. 2003. Combined molecular and morphological phylogenetic analysis of the New Zealand wolf spider genus Anoteropsis(Araneae:Lycosidae). Molecular Phylogenetics and Evolution 28 : 576-587.
Wang, J. P., M. P. Tsai, M. J. Yu, and S. C. Lee. 1999. Influence of glaciation of divergence patterns of the endemic minnow, Zacco pachycephalus, in Taiwan. Molecular Ecology 8 : 1879-1888.
Wang, J. P., K. C. Hou, and T. Y. Chiang. 2000. Mitochondrial DNA phylogeography of Acrossocheilus paradoxus(Cyprinidae)in Taiwan. Molecular Ecology 9 : 1483-1494.
Wang, J. P., H. D. Lin, S. Huang. C. H. Pan, X. L. Chen, and T. Y. Chiang. 2004. Phylogeography of Varicorhinus barbatulus(Cyprinidae)in Taiwan based on nucleotide variation of mtDNA and allozymes. Molecular Phylogenetics and Evolution 31 : 1143-1156.
Yang, Y. J., Y. S. Lin, J. L. Wu, and C. F. Hui. 1994. Variation in mitochondrial DNA and population structure of the Taipei treefrog Rhacophorus taipeianus in Taiwan. Molecular Ecology 3:219-228.
Yuan, S. L., L. K. Lin, and T. Oshida. 2006. Phylogeography of the mole- shrew(Anourosorex yamashinai)in Taiwan:implications of interglacial refugia in a high-elevation small mammal. Molecular Ecology 15 : 2119-2130.
王昭均. 2006. 台灣東部地區草蜥屬雜交現象之偵測. 國立台灣師範大學生命科學系碩士論文. 台北.
呂光洋. 1997. 「台灣生物相形成及演化之探討」計畫簡介. 科學發展月刊 25:723-732.
何嘉欣. 2002. 以細胞色素b核酸序列分析台灣地區蝎虎族群之親緣關係. 國立中山大學生物科學研究所碩士論文. 高雄.
李宜欣. 2004. 台灣島內緣點白粉蝶與白粉蝶粒線體DNA變異研究. 國立台灣師範大學生命科學系碩士論文. 台北.
李峻瑋. 2001. 以粒線體之細胞色素氧化酶I部分序列探討台灣地區人面蜘蛛(Nephila maculata)之族群遺傳結構. 私立東海大學生物學系碩士論文. 台中.
吳明瑾. 2004. 以粒線體DNA控制區域序列探討台灣華南鼬鼠之種內地理變異. 國立中山大學生物科學系研究所碩士論文. 高雄.
林思民. 2003. 台灣及鄰近地區草蜥屬的親緣關係與親緣地理學研究(有鱗目:蜥蜴科). 國立台灣師範大學生物研究所博士論文. 台北.
林俊宏、李錦年、楊智傑、呂柏緯、陳世煌、呂光洋、方剛. 1999. 台灣產褸網蜘蛛分子遺傳結構之分析. 師大生物學報. 34(2): 95-104.
林雪美. 2000. 揭開福爾摩沙的面紗-台灣的自然地理(上冊) 第七章:台灣的河川. 國立台中圖書館.
柯心平. 2003. 台灣擬食蝸步行蟲之基礎生態學研究及族群分化問題探討. 國立台灣大學昆蟲學研究所碩士論文. 台北.
許富雄. 2000. 高山白腹鼠及台灣森鼠粒線體DNA之地理類緣關係. 國立台灣大學動物學研究所博士論文. 台北.
陳世煌. 2001. 台灣常見蜘蛛圖鑑. 行政院農業委員會.
陳美惠、袁孝維、林耀松. 2004. 台灣地區環頸雉遺傳組成多樣性和族群遺傳結構. 台大實驗林研究報告 18(2): 65-75.
陳惠琦. 1994. 梭德氏赤蛙的粒線體DNA序列與族群變異之初探. 台灣大學動物研究所碩士論文. 台北.
郭瓊華. 2002. 台灣蜓蜥族群遺傳結構之研究. 國立台灣師範大學生物學系碩士論文. 台北.
黃生. 1991. 基因流傳與族群分化. 生物科學 34(2): 19-32.
黃鈞漢. 2003. 以mtDNA D-loop片段探討艾氏樹蛙(溪頭地區)之族群遺傳結構. 國立彰化師範大學生物學系碩士論文. 彰化.
葉文珊. 1997. 莫氏樹蛙族群地理親緣關係之研究. 國立台灣大學動物研究所碩士論文. 台北.
鄭雅茵. 2000. 夸父璀灰蝶族群遺傳結構與璀灰蝶屬親緣關係之研究. 國立台灣師範大學生物學系碩士論文. 台北.
蔡長益. 1999. 以粒線體12S核糖體核酸與細胞色素b序列分析守宮族群親緣關係. 國立中山大學生命科學系碩士論文. 高雄.
盧建名. 2005. 棲地零碎化對諸羅樹蛙(Rhacophorus arvalis)族群遺傳結構影響之探討. 國立台灣師範大學生命科學系碩士論文. 台北.
劉名允. 2005. 沼蝦屬分子系統分類及台灣的粗糙沼蝦親緣地理和族群遺傳探討. 國立台灣清華大學生命科學系碩士論文. 新竹.
劉怡里. 2000. 以RAPD方法分析台灣產樹蛙屬樹蛙之族群遺傳結構. 國立台灣大學動物學研究所碩士論文. 台北.
繁玉萍. 2001. 台灣島形成過程對台灣淡水魚族群遺傳結構之研究. 國立清華大學碩士論文. 新竹.