簡易檢索 / 詳目顯示

研究生: 陳清福
Chen, Ching-Fu
論文名稱: 衛星定位技術應用於潛在大規模崩塌之地表位移研究
A Study on GNSS Surveying for Land Surface Displacement in the Potentially Large-scale-landslide Area
指導教授: 王聖鐸
Wang, Sen-Do
謝有忠
Hsieh, Yu-Chung
學位類別: 碩士
Master
系所名稱: 地理學系
Department of Geography
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 65
中文關鍵詞: 衛星定位潛在大規模崩塌地表位移
英文關鍵詞: GNSS Surveying, Land Surface Displacement, Potentially Large-scale-landslide Area
DOI URL: http://doi.org/10.6345/NTNU202000204
論文種類: 學術論文
相關次數: 點閱:274下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因臺灣的地理位置與地質條件,坡地土砂災害幾乎年年發生,而在民國98年莫拉克颱風期間出現的複合型土砂災害,更是以大規模崩塌(或稱深層崩塌)所引起的災害最令國人關注。
    對於大規模崩塌潛勢區之觀測,因滑動體範圍大,且同時會有不同滑動體之情形,難能有完整系統監測。因此中央地調所於民國101年開始,選定具潛在活動性之潛在大規模崩塌區位進行觀測工作的規劃與設置。針對選定的邊坡佈設全球衛星導航系統(Global Navigation Satellite System, GNSS),持續觀測坡面位移並據以分析。希冀透過該計畫的推動與成果的分析提供未來國內各相關機關在潛在大規模崩塌觀測可採用的設備與方法,以供評估崩塌活動性與風險之參考。
    自此本研究開始投入此一作業方法的研發,包含衛星接收儀的硬體架構、主機自動化作業模式的開發、太陽能發電系統的整合、通訊方式的整合與應用、資料的解算與分析、成果的視覺化呈現,以及整體標準作業流程的自動化,皆在此計畫中逐一引進並逐步整合為一於坡面獨立自主的作業系統,後續此一概念更廣為各單位引用,例如水土保持局、農委會林務局等,證明其可行性已廣為各單位接受。
    本研究針對竹林坡面的觀測數據可以清楚的了解潛勢區在降雨期間與位移量,透過兩者的比較,除釐清坡面整體運動型態外,更可掌握不同塊體間的相對運動型態;這些資料可做為後續細部觀測、地質分析等應用之參考依據。
    為提高對防災決策提供更實質的幫助,未來系統優化的方向應該朝提高觀測資料呈現的密度,甚至可以達到每五分鐘解。然而地表位移變化應具有多種因素影響而產生,如突然性的地殼變動、雨季與非雨季的周期變化以及降雨後的入滲量等現象,精確的作法應為綜合這些現象與位移的時間序,整合分析不同成因所代表之數學模式,進而了解各個坡面特殊的運動型態,提供作為警戒值訂定的參考。

    Slopeland sediment disaster occurs frequently due to geographical location and geological conditions of Taiwan. Typhoon Morakot triggered a compound disaster in 2009 that the large-scale landslide (deep-seated landslide) dragged the most attention.
    It is difficult to setup a complete monitoring system because of the size and multiple moving masses of potential large-scale landslides. Therefore, the Central Geological Survey started a project to build up observation systems to clarify the status of potential large-scale landslides with potential activity since 2011. Global Navigation Satellite System (GNSS) was selected to analyze continuous surface displacement of the potential large-scale landslides. The purpose of the project was to provide a better monitoring solution including equipment and methods evaluating the activities and risks of potential large-scale landslides.
    The research and development of the observation system has been started since the project mentioned above. The observation system includes hardware structure of the GNSS receiver, automatic operation mode, solar power systems integration, communication integration and application, data processing and analysis, and visualization of the results. The overall standard operating procedures have been introduced one by one and gradually integrated into an independent and automatic operating system. This concept has been widely adopted by various units, such as the Soil and Water Conservation Bureau, the Forestry Bureau and so on. The feasibility of the operating system has been widely accepted by all the units.
    In this study, the observational displacement data and rainfall data at Chu-Lin slope were used. By comparing the two dataset, the motion pattern of the slope was well clarified. In addition, relative motion patterns between different blocks on the slope was also quantified. These data can also serve as an important reference for detailed observations, geological analysis and further application.
    In order to contribute to disaster prevention decision making processes, the optimization of future system should aim at increasing the density of observational data, which can even produce results every five minutes. However, landslide displacement is controlled by many factors such as sudden crustal changes, periodic changes in the rainy and non-rainy seasons, and infiltration after rainfall. The proper method is to synthesize the time series of these phenomena and displacement and to integrate and analyze the mathematical models represented by different causes. By doing so, the unique movement patterns of each slope could be understood and applying for defining the warning criteria.

    摘要 II Abstract III 目錄 V 圖目錄 VII 表目錄 X 壹、前言 1 1.1背景 1 1.2動機與目的 4 1.3研究架構 5 貳、文獻回顧 7 2.1潛在大規模崩塌定義 7 2.2國內大規模崩塌案例 8 2.3潛在大規模的調查 12 2.4潛在大規模的監測 13 2.5 GNSS於地表活動觀測的應用 17 2.6以單頻GNSS接收機進行斷層監測之評估 20 2.7全球衛星定位與自動化監測系統在坡地防災之應用 22 參、研究方法 25 3.1. 潛在大規模崩塌GNSS觀測系統建置 25 3.1.1.崩塌地之選定 以竹林崩塌地為範例說明 26 3.1.2.設備配置 28 3.1.3.大規模崩塌坡面觀測點位施作 29 3.1.4坡面設備演進歷程 31 3.2潛在大規模崩塌區觀測資料解算與分析 35 3.2.1.作業自動化流程 35 3.2.2.資料蒐集與解算流程 36 3.2.3.資料解算軟體BERNESE說明 38 3.2.4.資料解算成果之品質管制 40 肆、成果與討論 42 4.1觀測成果說明 42 4.2 坡面位移成果分析 42 伍、結論 61 陸、未來展望 62 參考文獻 64

    1.王文能,2016。崩塌的地質特性與防災,ISBN:978-986-83-0095-8,中華防災學會出版委員會,260頁。
    2.內政部國土測繪中心基本控制點檢測報告,2000-2-24
    3.行政法人國家災害防救科技中心,2015。大規模崩塌災害防治行動綱領,34頁
    4.行政院農業委員會水土保持局,2000。921集集大地震坡地水土災害及復建紀實,國立中興大學水土保持系,133頁。
    5.行政院農業委員會水土保持局,2014。「坡地崩塌防減災策略先期研析計畫」成果報告,財團法人成大研究發展基金會,238頁。
    6.行政院農業委員會水土保持局,2015。「大規模崩塌防減災技術發展與應用」成果報告,財團法人成大研究發展基金會,697頁。
    7.行政院農業委員會水土保持局,2016。「105年大規模崩塌區影響範圍調查與劃設」成果報告,財團法人成大研究發展基金會,615頁。
    8.行政院農業委員會水土保持局,2017。「106年大規模崩塌區影響範圍調查與劃設及發生雨量推估可行性評估」成果報告,財團法人成大研究發展基金會,850頁。
    9.交通部運輸研究所,2008。「全球衛星定位與自動化監測系統在坡地防災之應用(1/4)」,饒正、陳志芳、林雅雯、洪本善、李秉乾、周天穎、蕭泰中。
    10.何岱杰、張維恕、林慶偉、劉守恆,2014。應用數值地形及光學影像於潛在大規模崩塌地形特徵判釋,航測及遙測學刊,第18卷 第 2 期,109-127頁。
    11.李錫堤,2011,草嶺大崩山之地質與地形演變,中華水土保持學報,第42卷第4期,325-335頁。
    12.李錫堤、董家鈞、林銘郎,2009。小林村災變之地質背景探討,地工技術,第122期,87-94頁。
    13.侯進雄、費立沅,2013。臺灣大規模崩塌調查的發展現況,地質,第32卷第1期,40-43頁。
    14.陳樹群、吳俊鋐,2009。高雄縣小林村獻肚山巨型深層崩塌引致之地形變遷特性,中華水土保持學報,第40卷第4期,359-376頁。
    15.費立沅、李彥良,2009。莫拉颱風崩塌地之快速判釋與災害統計,地工技術,第122期,61-68頁。
    16.經濟部中央地質調查所,2012。「99年度國土保育之地質敏感區調查分析計畫成果-莫拉克災區潛在大規模崩塌地區分析報告」
    17.經濟部中央地質調查所,2018。「斷層活動性觀測研究第四階段-地表變形觀測資料處理分析與斷層模型反演評估(2/4)」期末報告,國立成功大學,290頁。
    18.經濟部中央地質調查所,2019。「潛在大規模崩塌地表變形與數值地形計量分析」期末報告,經濟部中央地質調查所,213頁。
    19.葉大綱,2005。國立交通大學土木工程學系博士論文「GPS接收儀資料品質監控系統及校正系統之建立」,第29頁。
    20.內政部國土測繪中心,1999,九二一地震災區基本控制點檢測報告。
    21.謝有忠、林慶偉、何岱杰,2019。潛在大規模崩塌調查現況。地質,38(2), 30- 34頁。
    22.謝有忠、林慶偉、陳勉銘、費立沅、戴東霖、林樞衡、陳宏仁、邱禎龍,2019。莫拉克風災後潛在大規模崩塌調查成果與未來展望,中華民國地球物理學會與中華民國地質學會108 年年會暨學術研討會,臺北,中華民國地質學會。
    23.謝宗霈,2007。應用影像計算於地表變位之監測-以紅菜坪地滑為例,臺南市,國立成功大學地球科學研究所碩士論文,113頁。
    24.土質工學會,1985,土砂災害の予知と對策,土質基礎工學ライブラリ—27,ISBN: 4886443222
    25.齋藤迪孝,1981,斜面崩壞予測,土と基礎,Vol 29, No. 5, 77-82
    26.横山俊治,1999,斜面変動発達史に見る素因と誘因の関係,斜面地質学--その研究動向と今後の展望--,pp.48-51,日本応用地質学会。
    27.Chen, Y.S., Kuo, Y.S., Lai, W.C., Tsai, Y.J., Lee, S.P., Chen, K.T., and Shieh, C.L., 2011. Reflection of Typhoon Morakot – The Challenge of Compound Disaster Simulation. J. Mt. Sci. 8: 571–581. DOI: 10.1007/s11629-011-2132-5
    28.Goodman, R.E. (1989) Introduction to Rock Mechanics. 2nd Edition, John Wiley & Sons Ltd., New York., 576P.
    29.H.-Y. Chen, L.-C. Kuo1, J.-C. Lee1, H. Tung, S.-H. Su1, S.-S. Yao and H. Lee., 2015. Reducing distance dependent bias in low-cost single frequency GPS network to complement dual frequency GPS stations in order to derive detailed surface deformation field. Survey Review 2015 Vol47 No340, 7-16
    30.Krzeminska, D. M., Bogaard T. A., van Asch Th. W. J., and van Beek L. P. H., 2012. A conceptual model of the hydrological influence of fissures on landslide activity, Hydrol. Earth Syst. Sci., 16, 1561–1576
    31.Mitchell, J.K. and Soga, K.,2005. Fundamentals of Soil Behavior. 3rd Edition, John Wiley & Sons, Hoboken
    32.Terzaghi K., 1950. Mechanism of Landslides, Application of Geology to Engineering Practice, Geological Society of America. ISBN: 9780813759418.
    33.Horng-Yue Chen, Hsin Tung, Ya-Ju Hsu & HungKyu Lee, 2019. Evaluation of single-
    frequency receivers for studying crustal deformation at the longitudinal Valley fault, eastern Taiwan.

    下載圖示
    QR CODE