簡易檢索 / 詳目顯示

研究生: 陳立
論文名稱: 中文情感語意自動分類之研究
指導教授: 侯文娟
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 39
中文關鍵詞: 語意分類自然語言處理中文處理
論文種類: 學術論文
相關次數: 點閱:202下載:37
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前情感語意分析的研究,半監督式學習和非監督式學習還屬於初發展的階段。由於基於監督學習情感分析的研究已經很成熟了,基於半監督學習的情感分析將會是未來的研究趨勢。
    本篇論文所研究的為利用網路上的繁體中文電影討論區中網友的各類影評留言,探討中文文章中情感語義的分類,中文跟英文在用法上有很多的不同處,中文的研究探討對於我們中文使用者來說更是重要。本篇的方法用「連續」表達程度的不同而非二元的「正評價」、「負評價」,正和負為連續語義的兩邊極值,而在兩極值中間的值則表示存在有潛在的興趣。我們利用了非監督式分類的方法,所以並不需要已註釋的訓練資料,而僅需要使用到一般常用的「否定字」和「副詞」資訊,非監督式分類的方法還包含了一個「種子」字彙及反覆再訓練,使擴大其原本的字彙量。
    經過本研究的方法及實驗,提出了一個自動分類文章語意的方法,有效的利用了中央研究院詞庫小組的斷詞系統,並且從單純的二分類法擴展到連續的評分程度。

    附表目錄……………………………………………………………VII 附圖目錄……………………………………………………………VIII 第一章 簡介                     1 第一節 問題描述………………………………………………1 第二節 研究背景與目的………………………………………2 第三節 論文組織………………………………………………2    第二章 相關研究探討                4 第一節 中文處理………………………………………………4 第二節 監督式語意分類………………………………………7 第三節 非監督式語意分類……………………………………8 第四節 種子字彙篩選…………………………………………10 第三章 方法與步驟                  12 第一節 研究方法與架構………………………………………12 第二節 選取種子字彙…………………………………………14 第三節 語意分類………………………………………………15 第四節 反覆訓練………………………………………………16 第四章 實驗結果與分析              19 第一節 實驗資料………………………………………………19 第二節 實驗過程………………………………………………23 第三節 評估分析………………………………………………26 第五章 結論與未來發展                34 第一節 結論……………………………………………………34 第二節 未來發展………………………………………………34 參考文獻                       36

    [1] Foo, Schubert, and Hui Li. 2004. Chinese Word Segmentation and Its Effects on Information Retrieval. Information Processing and Management, 40(1). 161–190.

    [2] Dave, Kushal, Steve Lawrence, and David M. Pennock.2003. Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews. In Proceedings of the Twelfth International World Wide Web Conference. 519–528.

    [3] Pang, Bo, and Lillian Lee. 2004. A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts. In Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics. 271–278.

    [4] Turney, Peter D. (2002) Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA. 417–424.

    [5] Yu, Hong, and Vasileios Hatzivassiloglou. 2003. Towards Answering Opinion Questions: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences. In Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing. 129–136.

    [6] Hagedorn, Bennett, Massimiliano Ciaramita & Jordi Atserias (2007) World knowledge in broad-coverage information filtering. In Proceedings of the 30th ACM SIGIR Conference on Research and Development in Information Retrieval. 801–802.

    [7] Engstrom, Charlotte. 2004. Topic Dependence in Sentiment Classification. Unpublished MPhil Dissertation. University of Cambridge.

    [8] Bhmed Bbbasi,Hsinchun Dhen,Brab,Salem. Sentiment Analysis in Multiple Languages:Feature Selection for Opinion Classification in Web Forums.BDM Transaction on Information Systems,26(3),12:1-12:34

    [9] Yarowsky, David. 1995. Unsupervised Word Sense Disambiguation Rivaling Supervised Methods. In Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics. 189–196.

    [10] Abney, Steven (2002) Bootstrapping. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA. 360–367.

    [11] 朱嫣嵐,閔錦,周雅倩,黃萱菁,吳立德.基於HowNet的詞彙語義傾向計算.中文信息學報,2006,20(1),14-20

    [12] 婁德成,姚天妨.漢語與子語義極性分析和觀點抽取方法的研究.計算機應用,2006,26(11),2622-2625

    [13] Hiroshi, Tetsuya, Hideo. Deep Sentiment Analysis Using Machine Translation Technology. Proceedings of Doling -0

    [14] Zagibalov, Taras, and John Carroll. 2008. Unsupervised Classification of Sentiment and Objectivity in Chinese Text. In Proceedings of the Third International Joint Conference on Natural Language Processing. 304–311.

    [15] John Blitzer,Mark Dredze, Fernando Pereira. Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification. Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, 440 447

    [16] Songbo Tan, Xueqi Dheng. Improving SDL Model for Sentiment-Transfer Learning. Proceedings of NBBDL HLT 2009: Short Papers, 181 184

    [17] Songbo Tan, Xueqi Dheng, Yuefen Wang, Hongbo Xu. Adapting Naive Bayes to Domain Adaptation for Sentiment Analysis. EDIR 2009,337 349

    [18]Qiong Wu, Songbo Tan, Xueqi Dheng. Graph Ranking for Sentiment Transfer. Proceedings of the BDL-IJDNLP 2009 Conference Short Papers, 317 320

    [19] Chul-Min Lee, Shrikanth S. Narayanan, Roberto Pieraccini, “Combining Acoustic and Language Information for Emotion Recognition,” ICSLP 2002, 2002.

    [20] Fiorella de Rosis, Floriana Grasso, A. M. Paiva (Ed.), “Affective Interactions,” LNAI 1814, pp. 204-218, 2000.

    [21] Pang, Bo, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up? Sentiment Classification using Machine Learning Techniques. In Proceedings of the 2002 Conference on Empirical

    [22] Lun-Wei Ku and Hsin-Hsi Chen (2007). “Mining Opinions from the Web: Beyond Relevance Retrieval.” Journal of American Society for Information Science and Technology, Special Issue on Mining Web Resources for Enhancing Information Retrieval, 58(12), pages 1838-1850. Software available at http://nlg18.csie.ntu.edu.tw:8080/opinion/index.html

    下載圖示
    QR CODE