簡易檢索 / 詳目顯示

研究生: 林芳銘
Lin, Fang-Ming
論文名稱: 3.5 GHz向量合成式相移器與38 GHz鏡像抑制降頻器設計
Design of 3.5 GHz Vector Sum Phase Shifters and 38 GHz Image Rejection Mixer
指導教授: 蔡政翰
Tsai, Jen-Han
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 165
中文關鍵詞: 第五代行動通訊向量合成式相移器鏡像抑制降頻器
英文關鍵詞: 5G, vector sum phase shifters, image rejection mixer
DOI URL: http://doi.org/10.6345/NTNU201900836
論文種類: 學術論文
相關次數: 點閱:254下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究領域為應用於第五代行動通訊之相移器與降頻混頻器。目前第五代行動通訊開放6 GHz以下頻段(Sub-6 GHz)及毫米波頻段(mmWave),主要使用頻段為3.5 GHz。當需要高速傳輸時,會轉換至毫米波頻段(mmWave)目前第一步開放28 GHz下一階段將開放38 GHz,目前主要往3.5 GHz以及38 GHz這兩個頻段發展。為了做出高精準度之相移器,採用向量合成式向移器,第二章將簡單介紹各類相移器及項移器主要設計參數,第三章與第四章將對向量合成式相移器進行分析,接著說明兩顆向量合成式之設計與實現。第一顆相移器,使用SiGe18 BiCMOS製作,四相位產生器使用多相位濾波器(PPF)實現。操作頻率在3.5GHz時,插入損耗平均值為-8.89dB,IP1dB為0dBm,功率消耗為18.94mW,相位誤差均方根為0.099度以及振幅誤差均方根值為0.113dB。
      第二顆晶片為第一顆晶片的改良,使用TSMC 65nm COMS,能進一步降低插入損耗與功率消耗,針對3.5 GHz做輸出匹配以提高增益並刪去不必要之電晶體。當操作頻率在3.5 GHz時,插入損耗平均值為-3.51dB,IP1dB為0dBm,功率消耗為8mW,相位誤差均方根為0.3612度以及振幅誤差均方根值為0.117dB。
      本論文最後一章介紹第三個電路,採用TSMC 65nm COMS製程設計之鏡像抑制降頻器,LO四相位產生器使用傳輸線做為補償,以及對90度耦合器挖地,可以讓90度耦合器的耦合量增加並改善IQ訊號不平衡的問題,IF端四相位合成採用多相位濾波器合成,由於多相位濾波器損耗較大,因此在IF端加上緩衝放大器來提升整體增益、在LO驅動功率為3 dBm,IF頻率為4.3 GHz時,在36 GHz至40 GHz鏡像抑制效果大於35 dB,轉換增益為-5±1 dB。

    The main research field of this thesis is based on phase shifter and Image Rejection Down -Comverter. From telecommunication to big data, higher frequency spectrum is needed for the large amount of data. Therefore, in order to satisfy tremendous data transmission,the fifth generation wireless communication system has been proposed and populated. The three circuits in this paper are applied at 3.5 GHz and 38 GHz, which is the potential spectrum in 5G systems.
      In the first half of this thesis, we introduce different types of phase shifter, and analyze switch type phase shifter used in this thesis. Then, we discuss the design and implementation on two circuits, phase shifters.
      The first circuit is vector sum phase shifter, using TSMC SiGe18 BiCMOS. Quadrature signal generator used polyphaser filter circuit and vector adder use Gilbert cell circuit. The frequency operated at 3.5 GHz has 0.099° RMS phase error and 0.113 dB RMS amplitude error. Insertion loss is -8.89dB. Power consumption is 18.94 mW.
      The second circuit is to improve the first circuit. In order to increase gain and reduce power consumption and reduce area, the circuit is fabricated using TSMC 65nm COMS. Quadrature signal generator using polyphaser filter circuit and vector adder use Gilbert cell circuit. The frequency operated at 3.5 GHz has 0.361° RMS phase error and 0.117 dB RMS amplitude error. Insertion loss is -3.51dB. Power consumption is 8 mW.
      The rest of this thesis, the third and also the final chip circuit is introduced. A high image rejection down-converter mixer designed at 38GHz. The conversion gain is -5±1 dB at LO power of 3 dBm and lower than 40 dB image rejection when the mixer ranged from 36 GHz to 40 GHz. Power consumption is 8 mW.

    摘 要 i ABSTRACT iii 誌 謝 v 目 錄 vi 圖 目 錄 vi 表 目 錄 xix 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 3 1.2.1 相移器文獻探討 3 1.2.2 混頻器文獻探討 7 1.3 研究成果 9 第二章 相移器介紹 11 2.1 簡介 11 2.2 相移器參數介紹 11 2.2.1 相位差 (Phase Difference) 11 2.2.2 插入損耗、振幅誤差 (Insertion Loss, Amp. Error) 11 2.2.3 RMS 相位差 (RMS Phase Error) 12 2.2.4 RMS振幅誤差 (RMS Amplitude Error) 12 2.2.5 1dB增益壓縮點 ("P1dB" ) 12 2.2.6 反射係數 (Return Loss) 13 2.3 相移器電路介紹 13 2.3.1 開關式相移器 13 2.3.2 反射式相移器 15 2.3.3 向量和式相移器 16 第三章 3.5 GHz向量合成式相移器設計 17 3.1 向量合成式相移器電路設計 17 3.2 向量合成式相移器架構比較 18 3.3 電路架構 18 3.4 正交訊號產生器設計 19 3.4.1 多相位濾波器設計 19 3.5 向量合成加法器設計 24 3.5.1 電晶體尺寸設計 25 3.5.2 輸出匹配設計 28 3.6 向量合成式相移器模擬 29 3.7 向量合成式相移器量測 36 3.8 問題與討論 43 3.8.1 電流源偏壓控制選擇 43 3.8.2 多相位濾波器(PPF)的阻抗與損耗 44 3.8.3 向量合成式相移器之放大器電晶體改用HBT模擬 48 3.9 總結 53 第四章 TSMC 65 nm CMOS 3.5 GHz向量合成式相移器設計 55 4.1 電路架構 55 4.2 TSMC 65 nm CMOS 3.5 GHz向量合成式相移器與上一章之差異 56 4.3 正交訊號產生器設計 56 4.4 向量合成加法器設計 59 4.4.1 電晶體尺寸設計 60 4.4.2 輸出匹配設計 63 4.5 向量合成式相移器模擬 65 4.6 向量合成式相移器量測 72 4.7 問題及討論 79 4.7.1 ESD問題 79 4.7.2 與SiGe18向量合成式相移器比較 81 4.7.3 SiGe18與65 nm之PPF Layout比較   84 4.8 總結 90 第五章 38GHz鏡像抑制降頻器 91 5.1 混頻器簡介與架構比較 91 5.1.1 混頻器簡介 91 5.1.2 混頻器架構比較 92 5.2 混頻器設計參數介紹 95 5.2.1 轉換增益 (Conversion Gain) 95 5.2.2 隔離度 (Isolation) 95 5.2.3 線性度 (Linearity) 96 5.2.4 鏡像訊號(Image) 96 5.3 鏡像抑制降頻器設計 98 5.3.1 鏡像抑制降頻器架構簡介 98 5.3.2 電晶體尺寸選擇 98 5.3.3 加入閘極端偏壓之電晶體尺寸選擇 103 5.3.4 RF端匹配設計 109 5.3.5 緩衝放大器設計 112 5.3.6 Mixer特性 116 5.3.7 LO正交訊號產生器與RF Balun設計 120 5.3.8 RF端功率分配器設計 133 5.3.9 IF端多相位濾波器設計 134 5.4 鏡像抑制降頻器模擬結果 136 5.5 鏡像抑制降頻器量測結果 141 5.6 問題與討論 145 5.6.1 製程飄移問題與改善 145 5.6.2 輸出功率過低問題與改善 150 5.6.3 隔離度量測結果與模擬有落差的原因 153 5.7 總結 159 第六章 結論 161 參 考 資 料 163

    [1] D. M. Zaiden, J. E. Grandfield, T. M. Weller, and G. Mumcu. “Compact and wideband MMIC Phase Shifters Using Tunable Active Inductor-Loaded all-pass networks,” IEEE Transactions on Microwave Theory and Techniques, Vol. 66, pp. 1047-1057, Feb. 2018.
    [2] Y. Xu, J. Xia and S. Boumaiza, “A 0.6–2.8GHz CMOS RF vector multiplier with low RMS magnitude and phase errors and high P1dB” IEEE Jan. 2017, June pp.2015-2017.
    [3] A. Asoodeh and M. Atarodi, "A Full 360° vector-sum phase shifter with very low RMS phase error over a wide bandwidth," IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1626-1634, Jun. 2012.
    [4] Y. Xu, J. Xia and S. Boumaiza, “A 0.6–2.8GHz CMOS RF vector multiplier with low RMS magnitude and phase errors and high P1dB” IEEE Jan. 2017, June pp.2015-2017.
    [5] T. Maruyama, K. Tsutsumi, E. Taniguchi, and M. Shimozawa, “1.4 deg.-rms 6-bit vector-sum phase shifter calibrating I-Q generator error by VGA for high SHF wide-band massive MIMO in 5G”, in Proc. Asia Pacific Microwave Conf., pp. 1–3, Dec. 2016.
    [6] J. Hu, W. Li, S. Liu, “A 65nm CMOS 6-18 GHz Full 360° 6-bit Phase Shifter” IEEE Jan. 2018, pp.51-53.
    [7] E.V. Balashov, I.A. Rumyancev, "A fully integrated 6-bit vector-sum phase shifter in 0.18 um CMOS", International Siberian Conference on Control and Communications (SIBCON), 21-23 May 2015, pp.1-5.
    [8] J. G. Yang, and K. Yang, “Ka-Band 5-Bit MMIC Phase Shifter Using InGaAs PIN Switching Diodes,” in IEEE Microwave and Wireless Components Letters., vol. 21, no. 3, pp. 151-153, Mar. 2011.
    [9] Q. Zheng, Z. Wang, K. Wang, G. Wang, H. Xu, L. Wang, W. Chen, M. Zhou, Zhengliang Huang, and Faxin Yu, “Design and Performance of a Wideband Ka-Band 5-b MMIC Phase Shifter,” in IEEE Microwave and Wireless Components Letters., vol. 27, no. 5, pp. 482-484, May. 2017.
    [10] Gyeong-Seop Shin, Jae-Sun Kim, Hyun-Myung Oh, Sunkyu Choi, Chul Woo Byeon, Ju Ho Son, Jeong Ho Lee, and Choul-Young Kim, “Low Insertion Loss, Compact 4-bit Phase Shifter in 65 nm CMOS for 5G Applications,” in IEEE Microwave and Wireless Components Letters., vol. 26, no. 1, pp. 37-39, Jan. 2016.
    [11] H. Alsuraisry, J. H. Cheng, H. W. Wang, J. Y. Zhong, J. H. Tsai, and T. W. Huang, “A X-band digitally controlled 5-bit phase shifter in 0.18-μm CMOS technology,” 2015 Asia-Pacific Microwave Conference (APMC)., Nanjing, China, Dec. 2015, pp. 1-3.
    [12] D. Huang, L. Zhang, D. Li, L. Zhang, and Y. Wang, “A 60GHz 360° digitally controlled phase shifter with 6-bit resolution and 2.3° maximal rms phase error in 65nm CMOS technology,” 2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)., Sendai, Japan. 2015, pp. 31-33
    [13] H. Gao et al., “60 GHz 5-bit digital controlled phase shifter in a digital 40 nm CMOS technology without ultra-thick metals,” in Electronics Letters., vol. 52, no. 19, pp. 1611-1613, Sep. 2016.
    [14] N. Mazor, O. Katz, R. Ben-Yishay, A. Valdes Garcia, and D. Elad, “SiGE based Ka-band reflection type phase shifter for integrated phased array transceivers,” 2016 IEEE MTT-S International Microwave Symposium (IMS)., San Francisco, CA, May. 2016, pp. 1-4.
    [15] L.-Y. Huang, Y.-T. Lin, and C.-N. Kuo, “A 38 GHz Low-Loss Reflection-Type Phase Shifter,” 2017 IEEE 17th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Phoenix, AZ, Jan. 2017, pp. 54-56.
    [16] Tsai, J‐H, Lin, Y‐H, Hung, C‐C. “A 3.5 GHz low insertion loss variation CMOS phase shifter.” Microw Opt Technol Lett. 2019; 61: 863– 866.
    [17] I. C. H. Lai, and M. Fujishima, “An Integrated 20-26 GHz CMOS Up-Conversion Mixer with Low Power Consumption,” 2006 Proceedings of the 32nd European Solid-State Circuits Conference., Montreux, Switzerland, Sep. 2006, pp. 400-403.
    [18] C. Huynh, J. Lee, and C. Nguyen, “A K-band SiGe BiCMOS fully integrated up-conversion mixer,” 2013 Asia-Pacific Microwave Conference Proceedings (APMC), Seoul, South Korea, Nov. 2013, pp. 185-187.
    [19] M. J. Zeng, and R. M. Weng, “A 0.8V 4.3mW sub-harmonic mixer for ultra-wideband systems,” 2012 IEEE International Symposium on Circuits and Systems., Seoul, Korea, May. 2012, pp. 1927-1930.
    [20] H. K. Chiou, S. C. Kuo, and H. Y. Chung, “14-30 GHz low-power sub-harmonic single-balanced gate-pumped mixer with transformer combiner in 0.18 μm CMOS,” in Electronics Letters., vol. 50, no. 16, pp. 1141-1143, Jul. 2014.
    [21] C. Chen, J. Lin and H. Wang, "A 38-GHz High-Speed I/Q Modulator Using Weak-Inversion Biasing Modified Gilbert-Cell Mixer," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 9, pp. 822-824, Sept. 2018.
    [22] J. Hsieh, T. Wang and S. Lu, "A 90-nm CMOS V-Band Low-Power Image-Reject Receiver Front-End With High-Speed Auto-Wake-Up and Gain Controls," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 2, pp. 541-549, Feb. 2016.
    [23] M. Frounchi, C. Coen, C. D. Cheon, N. Lourenco, W. Williams and J. D. Cressler, "A V-Band SiGe Image-Reject Receiver Front-End for Atmospheric Remote Sensing," 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), San Diego, CA, 2018, pp. 223-226.

    下載圖示
    QR CODE