簡易檢索 / 詳目顯示

研究生: 游朝傑
Chao-Chieh Yu
論文名稱: 碳氫混合冷媒應用於冷凍系統之性能與最佳化研究
Investigation on Performance and Optimization of Refrigeration System with Hydrocarbon Mixtures
指導教授: 鄧敦平
Teng, Tun-Ping
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 136
中文關鍵詞: 碳氫冷媒丙烷異丁烷混合冷媒冷凍系統環境溫度
英文關鍵詞: Hydrocarbon refrigerant, Propane, Isobutane, Mixed refrigerant, Refrigeration system, Ambient temperature
論文種類: 學術論文
相關次數: 點閱:418下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對R600a/R290混合冷媒進行小型R-134a冷凍系統換裝之性能研究。R-600a/R-290冷媒混合比例分別為35/65(HC1)、50/50(HC2)與100/0(HC3),充填比例則是R-134a的冷媒充填量的30%、40%、50%與60%。各種HC冷媒在不更動毛細管長度的情況下以不同充填比例與環境溫度的進行冷凍系統性能實驗。本研究主要探討冷凍系統的性能係數、能源因數、庫內溫度、壓縮比、壓縮機外殼溫度與系統高、低壓壓力。由實驗結果分析各HC冷媒的最佳充填量並修正毛細管長度之後再依據CNS測試標準進行24小時的性能測試。
    實驗結果顯示HC1、HC2與HC3的最佳充填量分別為40%、40%與40%。在最佳HC冷媒充填量之下大部分的實驗結果顯示HC冷凍系統的冷凍庫溫與消耗電力高於R134a冷凍系統。此外由低壓壓力可以發現所有HC冷凍系統的蒸發溫度均有過高的現象。這種現象代表毛細管所提供系統的高低壓力差不足。因此本研究以絕熱毛細管長計算公式搭配5℃過冷度的設定之下重新計算HC1、HC2與HC3冷媒的毛細管長度分別為5.0m、5.4m與5.6m。接著將冷凍系統換裝新的毛細管並根據CNS標準進行24hr的性能測試。實驗結果發現碳氫冷媒與R134a冷媒相比較最高能增加下拉溫度的斜率與能源因數分別為15%與12%;消耗電力方面最高可以節省22%。就整個研究結果而言,R134a冷凍系統要換裝碳氫冷媒必須重新設計毛細管。再者碳氫混合冷媒中的R600a所佔比例越高越能夠提升冷凍系統的EF與COP。此外HC冷媒的冷凍系統性能受到環境溫度上升的影響比R134a冷媒明顯,因此HC冷凍系統比較適合使用在環境溫度較低的場所。

    This study adopted hydrocarbon mixtures (R600a/R290) in the small R-134a refrigeration system to evaluate the performance of refrigeration. The mixing ratio by mass of R-600a/R-290 refrigerant were 35/65 (HC1), 50/50 (HC2) and 100/0 (HC3), charged ratio were 30%, 40 %, 50% and 60% base on the charged amount of R-134a refrigerant. The HC refrigeration systems without changing the capillary tube lengths were carried out the performance test at different charged ratios and ambient temperatures. This study investigated the coefficient of performance (COP), energy factor, freezing temperature, compression ratio, compressor housing temperature, high side and low side pressure. To determine the optimal charged ratios of HC refrigerants and corrected capillary lengths, and then performed the 24-hour performance test according to CNS testing standards.
    The experimental results showed the optimal charged ratios of HC1, HC2 and HC3 were 40%, 50% and 40%, respectively. The most of the experimental results of HC refrigeration systems with the optimal charged ratios showed that freezer temperature and power consumption was higher than R134a refrigeration system. Moreover, all HC refrigeration systems had higher evaporation temperature phenomena that could be observed by the low pressure. This phenomenon demonstrated that the capillary tube could be not provided enough pressure difference between the high-pressure side and low-pressure side. Therefore, this study adopted the calculation of adiabatic capillary tube length with subcooling temperature of 5℃ to recalculate the capillary tube length of HC1, HC2 and HC3, and the capillary tube lengths of HC1, HC2 and HC3 were 5.0m, 5.3m and 5.6m, respectively. Next, the refrigeration systems with new capillary tube lengths to perform the 24-hour performance test according to CNS testing standards. Experimental results showed that the highest increased ratio of the slope of pull-down and the energy factor with HC refrigerants was 15% and 12%; electricity consumption can be saved up to 22% compared with R134a refrigerant. The results in terms of the whole, the R134a refrigeration system was retrofitted HC refrigerants must to redesign the capillary tube lengths. Furthermore, higher proportion of R600a in HC mixtures could enhance the EF and the COP of refrigeration system. Moreover, refrigeration system performance of HC refrigerant was affected by the ambient temperature raises significantly than R134a refrigerant, therefore, application of HC refrigeration system is more suitable in the place with lower ambient temperature.

    摘要 i ABSTRACT ii 謝誌 iv 表目錄 ix 圖目錄 xi 符號釋義 xix 第一章 緒論 1 1.1. 前言 1 1.2. 研究目的 2 1.3. 研究流程 3 1.4. 研究背景 5 1.5. 論文架構 8 1.6. 文獻回顧 8 第二章 理論分析 13 2.1. 蒸汽壓縮循環系統之基本理論 14 2.1.1. 理想蒸汽壓縮循環 14 2.1.2. 實際蒸汽壓縮循環 15 2.1.3. 冷媒之熱物理性質分析 16 2.1.4. 自然冷媒基本性質介紹 21 2.1.5. 丙烷基本性質 22 2.1.6. 異丁烷基本性質 23 2.2. 碳氫混合冷媒 23 2.3. 共沸與非共沸冷媒之特性 24 2.4. 碳氫冷媒安全性評估 25 2.5. 毛細管長度選用 26 第三章 實驗設備與方法 30 3.1. 實驗系統 30 3.2. 量測方式 32 3.3. 量測用儀器 33 3.4. 實驗用冷媒相關資料 38 3.5. CNS標準測試條件 39 3.6. 系統測試環境 39 3.7. 實驗方法與步驟 41 3.8. 實驗變項 44 3.9. 實驗數據量測與分析 44 3.9.1. 實驗量測狀態點 45 3.9.2. 實驗數據分析 46 3.9.3. 24小時穩定運轉測試條件 47 第四章 結果與討論 49 4.1. R-134a充填量選擇 49 4.2. 下拉溫度測試 55 4.3. 穩定測試 71 4.4. 加載測試 86 4.5. 整體性能表現 101 4.6. 24小時穩定運轉測試分析 123 第五章 結論與建議 129 5.1. 結論 129 5.2. 後續研究 131 參考文獻 132 略傳 135

    1. 陳宗民,1993,談冷媒,中國冷凍空調雜誌,11期,第60-63頁。
    2. Eric Johnson, ”Global Warming From HFC”, Environmental Impact Assessment Review, volume 18, issue 6, pp. 485-492, November, 1998.
    3. 劉中哲,HC 冷媒冰箱發展現況,蒙特婁議定書資訊速報,77期,2002。
    4. T.P. Teng et al., ”Retrofit assessment of window air conditioner”, Applied Thermal Engineering. Vol. 32, pp. 100-107, 2012.
    5. Jose M. Corbera´na et al., ”Review of standards for the use of hydrocarbon refrigerants in A/C, heat pump and refrigeration equipment”, international journal of refrigeration, Vol. 31, pp. 748-756, 2008.
    6. T. O. Omideyi et al., ” Derived thermodynamic design data for heat pump systems operating on R290”, Journal of Heat Recovery Systems ,Vol. 3, pp. 137-143, 1983.
    7. E. Granryd, ” Hydrocarbons as refrigerantsdan overview”, International Journalof Refrigeration, Vol. 24, pp. 15-24, 2001.
    8. J. Blanco Castro et al., ”Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane (R290) as refrigerant: modelling analysis and experimental observations”, Applied Thermal Engineering, Vol. 25, pp. 2450-2462, 2005.
    9. A. Miyara, ”Condensation of hydrocarbons e a review”, International Journal of Refrigeration, Vol. 31, pp. 621-632, 2008.
    10. B. Thonon, ” A review of hydrocarbon two-phase heat transfer in compact heat exchangers and enhanced geometries”, International Journal of Refrigeration, Vol. 31, pp. 633-642, 2008.
    11. M. Mohanraj, S. Jayaraj, and C. Muraleedharan, ”Environment friendly alternatives to halogenated refrigerantsda review”, International Journal of Greenhouse Gas Control, Vol. 3, pp. 108-119, 2009.
    12. M.K. Khan, R. Kumar and P.J. Sahoo, ”Flow characteristics of refrigerants flowing through capillary tubes e a review”, Applied Thermal Engineering, Vol. 29, pp. 1426-1439, 2009.
    13. M. Mohanraj et al., ”Experimental investigation of R290/R600a mixture as an alternative to R134a in a domestic refrigerator ”, International Journal of Thermal Sciences, Vol. 48, pp. 1036-1042, 2009.
    14. C.S. Jwo, L.Y. Jeng and T.P. Teng, ”Performance assessment of an R-134a domestic dehumidifier retrofitted with a hydrocarbon mixture ”, International Journal of Green Energy, Vol. 7, pp. 485-497, 2010.
    15. M.A. Alsaad and M.A. Hammad, ”The application of propane/butane mixture for domestic Refrigerators”, Applied Thermal Engineering, Vol. 18, pp. 911-918, 1998.
    16. D. Jung , C. B. Kim and K Song, ”Byoungjin Park Testing of propane/isobutane mixture in domestic refrigerators”, International Journal of Refrigeration. Vol. 23, pp. 517-527, 2000.
    17. Y.S. Lee and C.C. Su, ”Experimental studies of isobutane (R600a) as the refrigerant in domestic refrigeration system”, Applied Thermal Engineering, Vol.22, pp. 507-519, 2002.
    18. Somchai Wongwises and Nares Chimres, ”Experimental study of hydrocarbon mixtures to replace HFC-134a in a domestic refrigerator”, Energy Conversion and Management, Vol. 46, pp. 85-100, 2005.
    19. M. Fatouh and M. El Kafafy, ”Assessment of propane/commercial butane mixtures as possible alternatives to R134a in domestic refrigerators”, Energy Conversion and Management, Vol. 47, pp. 2644-2658, 2006.
    20. M. Fatouh and M. El Kafafy, ”Experimental evaluation of a domestic refrigerator working with LPG”, Applied Thermal Engineering, Vol.26, pp. 1593-1603, 2006.
    21. K. Mani and V. Selladurai, ”Experimental analysis of a new refrigerant mixture as drop-in replacement for CFC12 and HFC134a”, International Journal of Thermal Sciences, Vol. 47, pp. 1490-1495, 2008.
    22. M.Y. Lee et al., ”Performance characteristics of a small-capacity directly cooled refrigerator using R290/R600a (55/45) ”, international journal of refrigeration, Vol. 31, pp. 734 -741, 2008.
    23. M. Mohanraj et al., ”Experimental investigation of R290/R600a mixture as an alternative to R134a in a domestic refrigerator”, International Journal of Thermal Sciences, Vol. 48, pp. 1036-1042, 2009.
    24. C. S. Jwo , C.C. Ting and W. R. Wang, ”Efficiency analysis of home refrigerators by replacing hydrocarbon refrigerants”, Measurement, Vol. 42, pp. 697-701, 2009.
    25. A.S. Dalkilic, S. Wongwises, ”A performance comparison of vapour-compression refrigeration system using various alternative refrigerants”, International Communications in Heat and Mass Transfer, Vol. 37, pp. 1340-1349, 2010.
    26. M. Rasti et al., ”Enhancement of domestic refrigerator’s energy efficiency index using a hydrocarbon mixture refrigerant”, Measurement, Vol. 45, pp. 1807-1813, 2012.
    27. Krauss and Stephan, ”Literature survey on thermophysical properties of natural refrigerants”, Proc. IIF/IIR Gustav Lorentzen Conf., Oslo, Norway, pp. 441-448, 1998.
    28. ASHRAE, ASHRAE standard 34, 2009, USA.
    29. ASHRAE, ASHRAE standard 15 , 2009, USA.

    下載圖示
    QR CODE