簡易檢索 / 詳目顯示

研究生: 邱啟誠
Chiu, Chi-Cheng
論文名稱: 高滲透壓環境下鳥類的腎臟大小和眼眶上鹽腺的趨同和相關性演化
Convergent and correlated evolution of kidney sizes and supraorbital salt glands for birds living in saline habitats
指導教授: 李壽先
Li, Shou-Hsien
口試委員: 洪志銘
Hung, Chih-Ming
廖本揚
Liao, Ben-Yang
李壽先
Li, Shou-Hsien
口試日期: 2023/05/10
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 37
中文關鍵詞: 相關性演化趨同演化適應鳥類腎臟鹽腺
英文關鍵詞: Correlated Evolution, Convergent, Adaptation, Ornithology, Kidney, Salt Gland
研究方法: 次級資料分析調查研究比較研究現象分析
DOI URL: http://doi.org/10.6345/NTNU202300599
論文種類: 學術論文
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雖然海洋為生物提供了廣闊的空間和豐富的資源,但由於海水高滲透壓的環境,對生物維持生理的恆定造成巨大壓力。以全球10,824種的鳥類為例,只有2.7%的鳥類能夠部分或完全使用高滲透壓的鹹水棲地。為了瞭解鳥類如何適應高鹽度環境的演化過程,我們整合鳥類25個目,總共230個物種的腎臟大小、功能性眼眶上鹽腺 (SSG) 和鹽度棲地使用類型。系統發育分析表明具有SSG、大腎臟和利用高鹽度棲地在鳥類中趨同演化。轉換率分析 (Transition rate analysis)表明,具有 SSG 和大腎臟的物種傾向於從低鹽度向高鹽度移動,而其他物種則向相反方向移動。然而,鹽度棲地使用也推動腎臟的演化。生活在高/低鹽度環境中的物種分別傾向於發育更大/更小的腎臟。我們的研究結果表明,SSG 和大腎臟可能是通過適應高鹽度和其他現有功能的共同選擇而演化的。總體而言,不同類型的棲地和生理機制相互作用,形成了鳥類對鹹水棲地環境的適應,我們的研究結果為鳥類的功能多樣性如何演化提供新的見解。

    Only a small number of avian species live in salty habitats. To infer how they evolved to tolerate high salinity, we examined how kidney sizes, supraorbital salt glands (SSGs), and the use of salty environments evolved in 230 species spanning 25 avian orders. Phylogenetic analysis suggests that SSGs, large kidneys, and utilization of salty habitats evolved convergently in birds. Transition rate analysis shows that species with SSGs and large kidneys tended to move from low to high salinity, whereas others moved in the opposite direction. However, habitat salinity also drove evolution of kidneys; lineages living in high/low salinity environments tended to develop larger/smaller kidneys, respectively. Our results suggest that SSGs and large kidneys may have evolved by adaptation to high-salinity and co-option of other existing functions. Overall, habitats and physiology interacted with each other to shape avian adaptation to salty environments. Our findings provide new insights into how birds’ functional diversity evolved.

    摘要 ii Abstract iii Contents iv Introduction 1 Materials and Methods 2 Collection of characteristics 2 Standardization of kidney sizes 3 Ancestral state reconstruction 3 Phylogenetic signals in kidney sizes, presence of SSG, and habitat salinity 4 Evolutionary transitions in kidney size, SSG and levels of habitat salinity 5 Searching morphological convergence among species in diverse saline habitat types 6 Results 7 Convergent evolution of larger kidney sizes, presence of SSG, and the use of high salinity habitat 7 Correlated evolution of large kidneys and functional SSGs 10 SSG and larger kidneys drove evolution of salinity adaptation 12 Salinity is a force to fine-tune evolution in birds’ kidney size 12 Discussion 12 References 19

    Hughes, M.R. (1970). Relative Kidney Size in Nonpasserine Birds with Func-tional Salt Glands. The Condor 72, 164–168. 10.2307/1366626.
    Quiring, D.P. (1950). Functional anatomy of the vertebrates (McGraw-Hill).
    Baumel, J. J. (1993). Handbook of avian anatomy: nomina anatomica avium. Publications of the Nuttall Ornithological Club.
    Schmidtnielsen, K., Jorgensen, C. B., and Osaki, H. (1958). Extrarenal salt excre-tion in birds. American Journal of Physiology 193, 101–107. 10.1152/ajplegacy.1958.193.1.101.
    Hughes, M.R. (2003). Regulation of salt gland, gut and kidney interactions. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 136, 507–524. 10.1016/j.cbpb.2003.09.005.
    Gutiérrez, J. S., Dietz, M. W., Masero, J. A., Gill Jr, R. E., Dekinga, A., Battley, P. F., and Piersma, T. (2012). Functional ecology of saltglands in shorebirds: flexible responses to variable environmental conditions. Functional Ecology 26, 236-244. 10.1111/j.1365-2435.2011.01929.x.
    Vidal, N., and Hedges, S. B. (2009). The molecular evolutionary tree of lizards, snakes, and amphisbaenians. Comptes rendus biologies 332, 129-139. 10.1016/j.crvi.2008.07.010.
    Babonis, L.S., and Brischoux, F. (2012). Perspectives on the Convergent Evolu-tion of Tetrapod Salt Glands. Integrative and Comparative Biology 52, 245–256. 10.1093/icb/ics073.
    Carpenter, R. E., and Stafford, M. A. (1970). The secretory rates and the chemi-cal stimulus for secretion of the nasal salt glands in the Rallidae. The Condor 72, 316-324. 10.2307/1366010.
    Cade, T.J., and Greenwald, L. (1966). Nasal Salt Secretion in Falconiform Birds. The Condor 68, 338–350. 10.2307/1365449.
    Schmidt-Nielsen, K., and Kim, Y. T. (1964). The effect of salt intake on the size and function of the salt gland of ducks. The Auk 81, 160-172. 10.2307/4082766
    Shuttleworth, T. J., and Hildebrandt, J. P. (1999). Vertebrate salt glands: Short‐and long‐term regulation of function. Journal of Experimental Zoology 283, 689-701. 10.1002/(sici)1097-010x(19990601)283:7<689::aid-jez7>3.0.co;2-t.
    Peaker, M., and Linzell, J.L. (1975). Salt Glands in Birds and Reptiles (Cam-bridge University Press).
    Skadhauge, E. (1982). A quantitative survey of salt and water excretion. Com-parative Biochemistry and Physiology Part A: Physiology 71, 481-483. 10.1016/0300-9629(82)90196-7.
    Johnson, O.W. (1968). Some Morphological Features of Avian Kidneys. The Auk 85, 216–228. 10.2307/4083582.
    Billerman, S.M., Keeney, B.K., Rodewald, P.G., and Schulenberg, T.S. eds. (2020). Birds of the World (Cornell Laboratory of Ornithology).
    Jetz, W., Thomas, G.H., Joy, J.B., Redding, D.W., Hartmann, K., and Mooers, A.O. (2014). Global Distribution and Conservation of Evolutionary Distinctness in Birds. Current Biology 24, 919–930. 10.1016/j.cub.2014.03.011.
    Hackett, S.J., Kimball, R.T., Reddy, S., Bowie, R.C.K., Braun, E.L., Braun, M.J., Chojnowski, J.L., Cox, W.A., Han, K.-L., Harshman, J., et al. (2008). A Phylo-genomic Study of Birds Reveals Their Evolutionary History. Science 320, 1763–1768. 10.1126/science.1157704.
    Revell, L.J. (2012). phytools: an R package for phylogenetic comparative biolo-gy (and other things). Methods in Ecology and Evolution 3, 217–223. 10.1111/j.2041-210X.2011.00169.x.
    Pagel, M. (1999). The Maximum Likelihood Approach to Reconstructing Ances-tral Character States of Discrete Characters on Phylogenies. Systematic Biology 48, 612–622.
    Pagel, M. (1994). Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proceedings of the Royal Society of London. Series B: Biological Sciences 255, 37–45. 10.1098/rspb.1994.0006.
    Pagel, M., and Lutzoni, F. (2002). Accounting for phylogenetic uncertainty in comparative studies of evolution and adaptation. In Biological Evolution and Statistical Physics Lecture Notes in Physics., M. Lässig and A. Valleriani, eds. (Springer), pp. 148–161. 10.1007/3-540-45692-9_8.
    Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N., and Pearse, W. (2018). caper: Comparative Analyses of Phylogenetics and Evolution in R.
    Ho, L.S.T., Ane, C., Lachlan, R., Tarpinian, K., Feldman, R., Yu, Q., and van der Bijl, W. (2016). Phylolm.
    Pagel, M., Meade, A., and Barker, D. (2004). Bayesian Estimation of Ancestral Character States on Phylogenies. Systematic Biology 53, 673–684. 10.1080/10635150490522232.
    Pagel, M., and Meade, A. (2006). Bayesian Analysis of Correlated Evolution of Discrete Characters by Reversible‐Jump Markov Chain Monte Carlo. The Amer-ican Naturalist 167, 808–825. 10.1086/503444.
    Meade, A., and Pagel, M. (2014). BayesTraits.
    Fristoe, T.S., Iwaniuk, A.N., and Botero, C.A. (2017). Big brains stabilize popu-lations and facilitate colonization of variable habitats in birds. Nat Ecol Evol 1, 1706–1715. 10.1038/s41559-017-0316-2.
    Gearty, W., Carrillo, E., and Payne, J.L. (2021). Ecological Filtering and Exapta-tion in the Evolution of Marine Snakes. The American Naturalist 198, 506–521. 10.1086/716015.
    Futuyma, D.J., and Moreno, G. (1988). The Evolution of Ecological Specializa-tion. Annual Review of Ecology and Systematics 19, 207–233.
    Schluter, D. (2000). Ecological Character Displacement in Adaptive Radiation. The American Naturalist 156, S4–S16. 10.1086/303412.
    Castiglione, S., Tesone, G., Piccolo, M., Melchionna, M., Mondanaro, A., Serio, C., ... and Raia, P. (2018). A new method for testing evolutionary rate variation and shifts in phenotypic evolution. Methods in Ecology and Evolution 9, 974-983.
    MacArthur, R.H. (1984). Geographical Ecology: Patterns in the Distribution of Species (Princeton University Press).
    Colegrave, N., and Collins, S. (2008). Experimental evolution: experimental evo-lution and evolvability. Heredity 100, 464–470. 10.1038/sj.hdy.6801095.
    Woods, R.J., Barrick, J.E., Cooper, T.F., Shrestha, U., Kauth, M.R., and Lenski, R.E. (2011). Second-Order Selection for Evolvability in a Large Escherichia coli Population. Science 331, 1433–1436. 10.1126/science.1198914.
    Ackerly, D.D., Schwilk, D.W., and Webb, C.O. (2006). Niche Evolution and Adaptive Radiation: Testing the Order of Trait Divergence. Ecology 87, S50–S61. 10.1890/0012-9658(2006)87[50:NEAART]2.0.CO;2.
    Baker, A.J., Pereira, S.L., and Paton, T.A. (2007). Phylogenetic relationships and divergence times of Charadriiformes genera: multigene evidence for the Creta-ceous origin of at least 14 clades of shorebirds. Biology Letters 3, 205–210. 10.1098/rsbl.2006.0606.
    Buckling, A., Wills, M.A., and Colegrave, N. (2003). Adaptation Limits Diversi-fication of Experimental Bacterial Populations. Science 302, 2107–2109. 10.1126/science.1088848.
    Collar, D.C., O’Meara, B.C., Wainwright, P.C., and Near, T.J. (2009). Piscivory Limits Diversification of Feeding Morphology in Centrarchid Fishes. Evolution 63, 1557–1573. 10.1111/j.1558-5646.2009.00626.x.
    Colles, A., Liow, L.H., and Prinzing, A. (2009). Are specialists at risk under en-vironmental change? Neoecological, paleoecological and phylogenetic ap-proaches. Ecology Letters 12, 849–863. 10.1111/j.1461-0248.2009.01336.x.
    Simpson, G.G. (1944). Tempo and Mode in Evolution (Columbia University Press).
    Stern, D.L. (2013). The genetic causes of convergent evolution. Nat Rev Genet 14, 751–764. 10.1038/nrg3483.
    Arendt, J., and Reznick, D. (2008). Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends in Ecology & Evolution 23, 26–32. 10.1016/j.tree.2007.09.011.
    Fänge, R., Schmidt-Nielsen, K., and Robinson, M. (1958). Control of Secretion From the Avian Salt Gland. American Journal of Physiology-Legacy Content 195, 321–326. 10.1152/ajplegacy.1958.195.2.321.
    Walsh, J., Benham, P.M., Deane-Coe, P.E., Arcese, P., Butcher, B.G., Chan, Y.L., Cheviron, Z.A., Elphick, C.S., Kovach, A.I., Olsen, B.J., et al. (2019). Genomics of rapid ecological divergence and parallel adaptation in four tidal marsh spar-rows. Evolution Letters 3, 324–338. 10.1002/evl3.126.
    Holmes, W.N., and Phillips, J.G. (1985). The Avian Salt Gland. Biological Re-views 60, 213–256. 10.1111/j.1469-185X.1985.tb00715.x.
    Price, T., and Langen, T. (1992). Evolution of correlated characters. Trends in Ecology & Evolution 7, 307–310. 10.1016/0169-5347(92)90229-5.
    Falconer, D.S. (1996). Introduction to quantitative genetics (Prentice Hall).
    Schmidt-Nielson, K., Borut, A., Lee, P., and Crawford, E. (1963). Nasal Salt Ex-cretion and the Possible Function of the Cloaca in Water Conservation. Science 142, 1300–1301. 10.1126/science.142.3597.1300.
    Sheldon, F.H., and Whittingham, L.A. (1997). Phylogeny in studies of bird ecol-ogy, behavior, and morphology. In Avian Molecular Evolution and Systematics, D. P. Mindell, ed. (Academic Press).
    Gould, S.J., and Vrba, E.S. (1982). Exaptation—a Missing Term in the Science of Form. Paleobiology 8, 4–15. 10.1017/S0094837300004310.
    Curio, E. (1973). Towards a methodology of teleonomy. Experientia 29, 1045–1058. 10.1007/BF01946716.
    West-Eberhard, M.J. (1998). Adaptation: current usages. In Keywords in Evolu-tionary Biology, E. F. Keller and E. A. Lloyd, eds. (Harvard University Press).
    Barceló, G., Salinas, J., and Sabat, P. (2012). Body mass, phylogeny and diet composition affects kidney morphology in passerine birds. Journal of Morpholo-gy 273, 842–849. 10.1002/jmor.20024.
    Peña-Villalobos, I., Valdés-Ferranty, F., and Sabat, P. (2013). Osmoregulatory and metabolic costs of salt excretion in the Rufous-collared sparrow Zonotrichia capensis. Comparative Biochemistry and Physiology Part A: Molecular & Inte-grative Physiology 164, 314–318. 10.1016/j.cbpa.2012.10.027.
    Sabat, P., Narváez, C., Peña-Villalobos, I., Contreras, C., Maldonado, K., Sanchez-Hernandez, J.C., Newsome, S.D., Nespolo, R., and Bozinovic, F. (2017). Coping with Salt Water Habitats: Metabolic and Oxidative Responses to Salt In-take in the Rufous-Collared Sparrow. Frontiers in Physiology 8.
    Rajpar, M.N., Ozdemir, I., Zakaria, M., Sheryar, S., and Rab, A. (2018). Seabirds as bioindicators of marine ecosystems. In Seabirds, H. Mikkola, ed. (Intechopen), pp. 47–65.

    無法下載圖示 電子全文延後公開
    2025/06/26
    QR CODE