研究生: |
林楷和 Lin, Kai-He |
---|---|
論文名稱: |
全新世早期遺址貽貝殼體穩定同位素紀錄所反映之馬祖亮島地區古環境 Early Holocene Paleoenvironment of the Liang Island, Matsu Area Inferred from Stable Isotope Records of Archaeological Mussel Shells |
指導教授: |
米泓生
Mii, Horng-Sheng 李匡悌 Li, Kuang-Ti |
口試委員: |
米泓生
Mii, Horng-Sheng 李匡悌 Li, Kuang-Ti 李孟陽 Lee, Meng-Yang 王士偉 Wang, Shih-Wei |
口試日期: | 2024/07/19 |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 128 |
中文關鍵詞: | 紫殼菜蛤 、穩定同位素 、馬祖亮島島尾遺址 、古環境 |
英文關鍵詞: | Mytilus edulis, stable isotope, Matsu Liangdao-Daowei archaeological site, paleoenvironment |
研究方法: | 調查研究 、 田野調查法 |
DOI URL: | http://doi.org/10.6345/NTNU202401773 |
論文種類: | 學術論文 |
相關次數: | 點閱:70 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分析了馬祖亮島11件島尾遺址 Ⅰ (距今約8300 ~ 7400年前)與12件島尾遺址 Ⅱ (距今約7600 ~ 7400年前)遺址貽貝殼體的碳氧同位素成分,馬祖南竿地區的17個不同月份現生貽貝樣本和97個馬祖南竿與北竿地區海水樣品的穩定同位素成分,以重建馬祖地區全新世早期的古環境。
南竿地區水樣品的平均氫、氧同位素數值分別為-2.9 ± 2.6 ‰和-0.8 ± 0.4 ‰(平均值 ± 1σ;N = 49;V-SMOW);北竿地區水樣品的平均氫、氧同位素數值分別為-2.7 ± 2.5 ‰和-0.8 ± 0.4 ‰(N = 48)。根據觀察到的同位素數值和鹽度紀錄,南竿、北竿水體的氧同位素值呈現季節性波動,並與淡水與海水混合的比例變化有關。
現生貽貝殼體的平均碳同位素數值,分別為-0.5 ± 0.4 ‰(N = 473;未水煮過)和-2.1 ± 0.6 ‰(N=31;水煮過);平均氧同位素數值,分別為-1.9 ± 0.5 ‰(V-PDB;未水煮過)和-2.0 ± 0.7 ‰(水煮過)。受到沸水烹煮過後現生貽貝殼體的碳同位素數值比未煮沸貽貝殼體的碳同位素數值低,但沸水烹煮對現生貽貝殼體的氧同位素成分無顯著的影響。而現生貽貝左殼平均碳同位素數值為-0.4 ± 0.4 ‰(N=29),平均氧同位素數值平均值為-1.8 ± 0.4 ‰;現生貽貝右殼平均碳同位素數值為-0.5 ± 0. 3‰(N=29),平均氧同位素數值為-1.7 ± 0.5 ‰,貽貝左、右兩瓣殼體在碳、氧同位素組成上無顯著的差異。
馬祖亮島島尾遺址 Ⅰ 貽貝殼體的平均碳、氧同位素數值,分別為0.5 ± 0.5 ‰和-1.2 ± 0.6 ‰(N = 531);島尾遺址 Ⅱ 遺址貽貝殼體的平均碳、氧同位素數值分別為0.7 ± 0.4 ‰和-1.6 ± 0.6 ‰(N = 394)。馬祖亮島島尾遺址 Ⅰ 與 Ⅱ 之遺址貽貝殼體的平均氧同位素數值有0.4 ‰的差異,扣除掉冰川效應所造成水體氧同位素0.2 ‰的影響,反映亮島於約8300 ~ 7400年前之間與約7600 ~ 7400年前之間的海水溫度可能低約1 ~ 2℃及/或當時的淡水混合量較少。
亮島島尾遺址貽貝殼體的平均碳同位素數值,比現生未煮沸貽貝殼體的平均碳同位素數值大約1%,反映出8300 ~ 7400年前馬祖地區水體的基礎生產力較高。馬祖亮島島尾遺址 Ⅰ 貽貝殼體的平均氧同位素數值,比現生貽貝殼體的平均氧同位素數值大約0.7 ‰,扣除掉冰川效應的影響,顯示當時的海水溫度可能比現在低約2 ~ 3℃及/或當時的淡水混合量較少;馬祖亮島島尾遺址 Ⅱ 貽貝殼體的平均氧同位素數值,比現生貽貝殼體的平均氧同位素數值大約0.3 ‰,扣除掉冰川效應的影響,顯示當時的海水溫度可能比現在低約0 ~ 1℃及/或當時的淡水混合量較少。現生和遺址標本單一殼體都可觀察到氧同位素數值的季節性波動,根據亮島島尾遺址 Ⅰ 最完整的6個與遺址 Ⅱ 最完整的7個貽貝標本,亮島島尾遺址 Ⅰ 採收季節分別為春夏(N = 3)、夏秋(N = 1)和冬季(N = 2);亮島島尾遺址 Ⅱ 採收季節分別為春夏(N = 3)、夏秋(N = 2)和冬季(N = 2),採收季節分布大致平均。
This study analyzed archaeological Mytilus shells collected from the Daowei Site I (N = 11, ~ 8300 to 7400 year B.P.) and the Daowei Site II (N = 12, ~ 7600 to 7400 year B.P.) on the Liang Island, Matsu, to characterize the modern environment information. Additionally, 17 modern Mytilus samples collected from different months in the Nangan area of Matsu and 97 seawater samples collected from the Nangan and Beigan areas were analyzed for stable isotope composition.
The average hydrogen and oxygen isotope values of the water samples from the Nangan area were -2.9 ± 2.6 ‰ and -0.8 ± 0.4 ‰ (mean ± 1σ; N = 49; V-SMOW), respectively. In the Beigan area, the average hydrogen and oxygen isotope values were -2.7 ± 2.5 ‰ and -0.8 ± 0.4 ‰ (N = 48), respectively. Based on the observed isotope values and salinity records, the oxygen isotope values in the water bodies of Nangan and Beigan exhibited seasonal fluctuations, related to the different mixing amount of freshwater and seawater.
The average carbon isotope values of the modern Mytilus shells were -0.5 ± 0.4 ‰ (N = 473; unboiled) and -2.1 ± 0.6 ‰ (N = 31; boiled), respectively. The average oxygen isotope values were -1.9 ± 0.5 ‰ (V-PDB; unboiled) and -2.0 ± 0.7 ‰ (boiled). Carbon isotope values of the boiled modern Mytilus shells is less than those of unboiled. However, there is no significant difference in oxygen isotope values between unboiled and boiled modern Mytilus shells. The average carbon isotope and oxygen isotope values of the left values were -0.4 ± 0.4 ‰ (N = 29) and -1.8 ± 0.4 ‰, respectively. The average carbon isotope and oxygen isotope values of the right values were -0.5 ± 0.3 ‰ (N = 29) and -1.7 ± 0.5 ‰, respectively. There is no significant difference in carbon and oxygen isotope values between the left and right valves of Mytilus shells.
The average carbon and oxygen isotope values of the archaeological Mytilus shells from the Daowei Site I on Liang Island, Matsu, were 0.5 ± 0.5 ‰ and -1.2 ± 0.6 ‰ (N = 531), respectively; the average carbon and oxygen isotope values of the Mytilus shells from the Daowei Site II were 0.7 ± 0.4 ‰ and -1.6 ± 0.6 ‰ (N = 394), respectively. The difference in the average oxygen isotope values between the Mytilus shells from Sites I and II was 0.4 ‰. After accounting for a 0.2 ‰ effect due to the ice volume effect, this indicates that the seawater temperature in ~ 8300 to 7400 year B.P. could have been 1 to 2°C lower and/or there was less freshwater mixing than that in ~ 7600 to 7400 year B.P. in Liang Island area.
The average carbon isotope values of the Mytilus shells from the Daowei Site I and II were 1‰ greater than that of modern, which may reflect higher primary productivity between 8300 and 7400 years ago B.P. The average oxygen isotope values of the Mytilus shells from Daowei Site I were about 0.7 ‰ greater than that of modern. After accounting for the ice volume effect (0.2 ‰), this suggests that the seawater temperature at that time was likely 2 to 3°C lower and/or there was less freshwater mixing than present. The average oxygen isotope values of the Mytilus shells from Daowei Site II were about 0.3 ‰ greater than that of modern Mytilus shells. After accounting for the ice volume effect, this suggests that the seawater temperature at that time was likely 0 to 1°C lower and/or there was less freshwater mixing than present. Seasonal fluctuations in oxygen isotope values were observed in both modern and archaeological specimens. Based on the six most complete archaeological mussel specimens from Daowei Site I and the seven most complete specimens from Daowei Site II, the harvest seasons for Daowei Site I were spring-summer (N = 3), summer-autumn (N = 1), and winter (N = 2); the harvest seasons for Daowei Site II were spring-summer (N = 3), summer-autumn (N = 2), and winter (N = 2). In general, the harvest seasons for Daowei Site I and II were evenly distributed.
毛曉平、劉翠芝、盧友發,2006,山東古代氣候與海岸變遷. 河南氣象, (2), 31-34。
何鵬、劉健、劉斌、寧亮、嚴蜜,2019,全新世兩次典型突變事件下北半球季風降水的變化對比. 第四紀研究, 39(6), 1372-1383。
李匡悌,2005,論墾丁史前聚落遺址的貝類採集及其古代水體環境的意義:南島學報,第1期,第47-63頁。
林重燁,2019,全新世早期微孔珊瑚骨骼穩定碳氧同位素組成與Sr/Ca比值反映之臺灣西南部古環境。國立臺灣師範大學地球科學研究所碩士論文,共114頁。
邱鴻霖、陳仲玉、游鎮烽,2015,馬祖亮島島尾遺址群綜合研究計畫:成果報告,國立清華大學,共274頁。
章斌、郭佔榮、高愛國、袁曉婕、李開培,2013,用氫氧穩定同位素揭示閩江河口區河水, 地下水和海水的相互作用. 地球學報, 34(2), 213-222.
郭城孟,2003,《海上桃花園:馬祖植物生態解說手冊》。連江縣南竿鄉:連縣府。
陳仲玉、邱鴻霖、游桂香、尹意智、林芳儀,2013,馬祖亮島島尾遺址群發掘及 [亮島人] 修復計畫. 連江縣政府文化局。
陳仲玉、潘建國、尹意智、何承翊、陳姍,2016,馬祖亮島島尾遺址群第三次發掘《期末成果報告》. 連江縣政府文化局。
彭宗仁,1989,苗栗白沙屯過港貝化石層內軟體動物化石之碳氧同位素研究。國立中山大學碩士論文,共75頁。
彭宗仁,2017,以氫氧同位素探討馬祖地區地下水之補注來源,國立中興大學,共14頁。
楊雅心,2005,馬祖地區地名的意涵--一個關於環境識覺的研究。國立臺灣師範大學碩士論文,共193頁。
楊詠然,2016,末次最大冰期以來台灣西部平原的環境變遷。國立臺灣大學碩士論文,共173頁。
Alley, R. B., & Ágústsdóttir, A. M., 2005, The 8k event: cause and consequences of a major Holocene abrupt climate change. Quaternary Science Reviews, 24(10-11), 1123-1149.
Bard, E., Hamelin, B., & Fairbanks, R. G., 1990, U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130, 000 years. Nature, vol. 346, p.456-458.
Bayne, B. L., Thompson, R. J., & Widdows, J., 1973, Some effects of temperature and food on the rate of oxygen consumption by Mytilus edulis L. In Effects of Temperature on Ectothermic Organisms: Ecological Implications and Mechanisms of Compensation (pp. 181-193). Berlin, Heidelberg: Springer Berlin Heidelberg.
Burchell, M., Stopp, M. P., Cannon, A., Hallmann, N., & Schöne, B. R., 2018, Determining seasonality of mussel collection from an early historic Inuit site, Labrador, Canada: Comparing thin-sections with high-resolution stable oxygen isotope analysis. Journal of Archaeological Science: Reports, 21, 1215-1224.
Carlson, A. E., LeGrande, A. N., Oppo, D. W., Came, R. E., Schmidt, G. A., Anslow, F. S., Licciardi, J. M., and Obbink, E. A., 2008, Rapid early Holocene deglaciation of the Laurentide ice sheet. Nature Geoscience, 1(9), 620-624.
Carré, M., Bentaleb, I., Bruguier, O., Ordinola, E., Barrett, N. T., & Fontugne, M., 2006, Calcification rate influence on trace element concentrations in aragonitic bivalve shells: evidences and mechanisms. Geochimica et Cosmochimica Acta, 70(19), 4906-4920.
Chappell, J., and Polach, H., 1991, Post-glacial sea-level rise from a coral record at Huon Peninsula, Papua New Guinea. Nature 349, p. 147-149
Chen, Y. G., and Liu, T. K., 1996, Sea level changes in the last several thousand years, Penghu Islands, Taiwan Strait. Quaternary Research, vol. 45, p.254-262.
Cheng, H., Fleitmann, D., Edwards, R. L., Wang, X., Cruz, F. W., Auler, A. S., ... & Matter, A., 2009, Timing and structure of the 8.2 kyr BP event inferred from δ18O records of stalagmites from China, Oman, and Brazil. Geology, 37(11), 1007-1010.
Cohen, A. L., Layne, G. D., Hart, S. R., & Lobel, P. S., 2001, Kinetic control of skeletal Sr/Ca in a symbiotic coral: Implications for the paleotemperature proxy. Paleoceanography, 16(1), 20-26.
Craig, H., 1961, Isotopic variations in meteoric waters. Science, 133(3465), 1702-1703.
Dansgaard, W., 1964, Stable isotopes in precipitation. tellus, 16(4), 436-468.
Das, O., Wang, Y., Donoghue, J., Xu, X., Coor, J., Elsner, J., & Xu, Y., 2013, Reconstruction of paleostorms and paleoenvironment using geochemical proxies archived in the sediments of two coastal lakes in northwest Florida. Quaternary Science Reviews, 68, 142-153.
Donner, J., & Nord, A. G., 1986, Carbon and oxygen stable isotope values in shells of Mytilus edulis and Modiolus modiolus from Holocene raised beaches at the outer coast of the Varanger Peninsula, north Norway. Palaeogeography, palaeoclimatology, palaeoecology, 56(1-2), 35-50.
Duan, P., Li, H., Sinha, A., Voarintsoa, N. R. G., Kathayat, G., Hu, P., ... & Cheng, H., 2021, The timing and structure of the 8.2 ka event revealed through high-resolution speleothem records from northwestern Madagascar. Quaternary Science Reviews, 268, 107104.
Eerkens, J. W., Schwitalla, A. W., Spero, H. J., & Nesbit, R., 2016, Staple, feasting, or fallback food? Mussel harvesting among hunter-gatherers in interior central California. Journal of Ethnobiology, 36(3), 476-492.
EPSTEIn, S. A. M. U. E. L., & Lowenstam, H. A., 1953, Temperature-shell-growth relations of recent and interglacial Pleistocene shoal-water biota from Bermuda. The Journal of Geology, 61(5), 424-438.
Evans, D., Brierley, C., Raymo, M. E., Erez, J., & Müller, W., 2016, Planktic foraminifera shell chemistry response to seawater chemistry: Pliocene–Pleistocene seawater Mg/Ca, temperature and sea level change. Earth and Planetary Science Letters, 438, 139-148.
Fairbanks, R. G., 1989, A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342(6250), 637-642.
Fleming, K., Johnston, P., Zwartz, D., Yokoyama, Y., Lambeck, K., & Chappell, J., 1998, Refining the eustatic sea-level curve since the Last Glacial Maximum using far-and intermediate-field sites. Earth and Planetary Science Letters, 163(1-4), 327-342.
Gat, J. R., 1996, Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences, 24(1), 225-262.
Geyh, M. A., Streif, H., & Kudrass, H. R., 1979, Sea-level changes during the late Pleistocene and Holocene in the Strait of Malacca. Nature, vol. 278, p.441 – 443.
Gillikin, D. P., Lorrain, A., Bouillon, S., Willenz, P., & Dehairs, F., 2006, Stable carbon isotopic composition of Mytilus edulis shells: relation to metabolism, salinity, δ13CDIC and phytoplankton. Organic Geochemistry, 37(10), 1371-1382.
Goodwin, D. H., Gillikin, D. P., Banker, R., Watters, G. T., Dettman, D. L., & Romanek, C. S., 2019, Reconstructing intra-annual growth of freshwater mussels using oxygen isotopes. Chemical geology, 526, 7-22.
Hanebuth, T., Stattegger, K., & Grootes, P. M., 2000, Rapid flooding of the Sunda Shelf: a late-glacial sea-level record. Science, vol. 288, p.1033-1035.
Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., & Röhl, U., 2001, Southward migration of the Intertropical Convergence Zone through the Holocene. Science, 293(5533), 1304-1308.
Hays, P. D., & Grossman, E. L., 1991, Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate. Geology, 19(5), 441-444.
Hoefs, J., & Hoefs, J., 2009, Stable isotope geochemistry (Vol. 285). Berlin: springer.
Hudson, J. D., & Anderson, T. F., 1989, Ocean temperatures and isotopic compositions through time. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 80(3-4), 183-192.
Jing, Y., Zhang, T., Zhu, B., Zhao, J., Zhao, X., Dou, Y., ... & Dong, L., 2024, Organic carbon burial and their implication on sea surface primary productivity in the middle Okinawa Trough over the past 200 ka. Frontiers in Marine Science, 11, 1331940.
Jung, Y. Y., Koh, D. C., Lee, J., & Ko, K. S., 2013, Applications of isotope ratio infrared spectroscopy (IRIS) to analysis of stable isotopic compositions of liquid water. Economic and Environmental Geology, 46(6), 495-508.
Krask, J. L., Buck, T. L., Dunn, R. P., & Smith, E. M., 2022, Increasing tidal inundation corresponds to rising porewater nutrient concentrations in a southeastern US salt marsh. Plos one, 17(11), e0278215.
Leavitt, S. W., & Lone, A., 1991, Seasonal stable-carbon isotope variability in tree rings: possible paleoenvironmental signals. Chemical Geology: Isotope Geoscience section, 87(1), 59-70.
Li, J., Dodson, J., Yan, H., Wang, W., Innes, J. B., Zong, Y., ... & Lu, F., 2018, Quantitative Holocene climatic reconstructions for the lower Yangtze region of China. Climate Dynamics, 50, 1101-1113.
Liu, X., Shen, J., Wang, S., Yang, X., Tong, G., & Zhang, E., 2002, A 16000-year pollen record of Qinghai Lake and its paleo-climate and paleoenvironment. Chinese Science Bulletin, 47, 1931-1936.
Liu, Y. H., Henderson, G. M., Hu, C. Y., Mason, A. J., Charnley, N., Johnson, K. R., & Xie, S. C., 2013, Links between the East Asian monsoon and North Atlantic climate during the 8,200 year event. Nature Geoscience, 6(2), 117-120.
Lutz, R. A., 1976, Annual growth patterns in the inner shell layer of Mytilus edulis L. Journal of the Marine Biological Association of the United Kingdom, 56(3), 723-731.
McCrea, J. M., 1950, On the isotope chemistry of carbonates and a paleotemperature scale. Journal of Chemistry and Physics, v. 18.
Meyer, H., Schönicke, L., Wand, U., Hubberten, H. W., & Friedrichsen, H., 2000, Isotope studies of hydrogen and oxygen in ground ice-experiences with the equilibration technique. Isotopes in Environmental and Health Studies, 36(2), 133-149.
Milano, S., Prendergast, A. L., & Schöne, B. R., 2016, Effects of cooking on mollusk shell structure and chemistry: Implications for archeology and paleoenvironmental reconstruction. Journal of Archaeological Science: Reports, 7, 14-26.
Müller, J., Sun, Y., Yang, F., Fantasia, A., & Joachimski, M., 2022, Phosphorus cycle and primary productivity changes in the Tethys Ocean during the Permian-Triassic transition: Starving marine ecosystems. Frontiers in Earth Science, 10, 832308.
Newell, R. I., 1989, Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (north and mid-atlantic): blue mussel (No. 4). The Center.
Parker, S. E., & Harrison, S. P., 2022, The timing, duration and magnitude of the 8.2 ka event in global speleothem records. Scientific Reports, 12(1), 10542.
Peltier, W. R., and Fairbanks, R. G., 2006, Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary
Read, K. R., & Cumming, K. B., 1967, Thermal tolerance of the bivalve molluscs Modiolus modiolus L., Mytilus edulis L. and Brachidontes demissus Dillwyn. Comparative biochemistry and physiology, 22(1), 149-155.
Royer, A., Daux, V., Fourel, F., & Lecuyer, C., 2017, Carbon, nitrogen and oxygen isotope fractionation during food cooking: Implications for the interpretation of the fossil human record. American Journal of Physical Anthropology, 163(4), 759-771.
Sharp, Z., 2017, "Principles of stable isotope geochemistry."
Stepka, Z., Azuri, I., Horwitz, L. K., Chazan, M., & Natalio, F., 2022, Hidden signatures of early fire at Evron Quarry (1.0 to 0.8 Mya). Proceedings of the National Academy of Sciences, 119(25), e2123439119.
Thompson, L. G., 2000, Ice core evidence for climate change in the Tropics: implications for our future. Quaternary Science Reviews, 19(1-5), 19-35.
Urey, H. C., 1947, The thermodynamic properties of isotopic substances. Journal of the Chemical Society (Resumed), 562-581.
Vereshchagin, O. S., Frank-Kamenetskaya, O. V., Shumilova, K. V., & Khadeeva, N. Y., 2018, Carbonate sediments on decorative fountains in Peterhof, Russia. Environmental earth sciences, 77, 1-10.
Wanamaker Jr, A. D., Kreutz, K. J., Borns Jr, H. W., Introne, D. S., Feindel, S., & Barber, B. J., 2006, An aquaculture‐based method for calibrated bivalve isotope paleothermometry. Geochemistry, Geophysics, Geosystems, 7(9).
Wang, C. H., & Peng, T. R., 1990, Oxygen and carbon isotopic records of mollusks in the Kuokang Shell Bed, Taiwan: implications and applications. Palaeogeography, palaeoclimatology, palaeoecology, 80(3-4), 237-244.
Webb, P., 2021, Introduction to oceanography. Roger Williams University.
Zheng, Y., Crawford, G. W., & Chen, X., 2014, Archaeological evidence for peach (Prunus persica) cultivation and domestication in China. PloS one, 9(9), e106595.
Zhou, M., Shen, Z., & Yu, R., 2020, Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang River. Studies of the Biogeochemistry of Typical Estuaries and Bays in China, 159-173.