簡易檢索 / 詳目顯示

研究生: 林韋丞
Lin, Wei-Cheng
論文名稱: 開發一高升壓比之升壓轉換器
Development of a Boost Converter With a High Step-up Ratio
指導教授: 陳美勇
Chen, Mei-Yung
白凱仁
Pai, Kai-Jun
口試委員: 賴慶明
Lai, Ching-Ming
白凱仁
Pai, Kai-Jun
陳美勇
Chen, Mei-Yung
口試日期: 2024/07/29
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 105
中文關鍵詞: 升壓轉換器電壓倍乘器連續導通模式
英文關鍵詞: Boost converter, voltage multiplier, continuous conduction mode
研究方法: 實驗設計法模擬與研究
DOI URL: http://doi.org/10.6345/NTNU202401935
論文種類: 學術論文
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究研製一低壓轉至高壓的升壓轉換器,其輸入電壓為24 V,輸出電壓為200 V及功率為200 W。其電源級拓撲採用升壓轉換器結合電壓倍乘器(Voltage multiplier)。升壓轉換器結合電壓倍乘器與傳統的升壓轉換器相比,同樣使用單開關切換,其控制方法亦與傳統的升壓轉換器相同;而結合電壓倍乘器的升壓轉換器可以提高電壓增益,與功率開關上的電壓應力(Voltage stress);其次,本研究研製的升壓轉換器結合四層電壓倍乘器,令電路中的所有電感操作在連續導通模式。基於升壓轉換器結合電壓倍乘器之動作原理於本文中進行說明,並結合一商用的脈衝寬度調變控制器,實現低電壓輸入,高電壓輸出之目的。本文將介紹元件之設計方法,以及推算過程。再者,本研究使用電路模擬軟體PSIM,模擬具有4層電壓倍乘器的升壓轉換器,進而與實驗結果相互比較,以驗證所建之模擬電路與所設計之脈衝寬度調變控制器所使用元件參數之正確性。

    This study developed a low voltage to high voltage boost converter with an input voltage of 24 V, output voltage of 200 V and a power of 200 W. The power stage topology used a boost converter combined with a voltage multiplier. Compared with traditional boost converters, boost converters combined with voltage multipliers also used a single switch, and their control methods were also the same as traditional boost converters; while boost converters combined with voltage multipliers can improve the voltage gain and voltage stress on the power switch; secondly, the boost converter developed in this study was combined with a four-layer voltage multiplier to enable all inductors in the circuit to operate in continuous conduction mode. The operating principle of a boost converter combined with a voltage multiplier was explained in this article, and combined with a commercial pulse width modulation controller to achieve the purpose of low voltage input and high voltage output. This article introduced the design method of components and the calculation process.
    Furthermore, this study used the circuit simulation software PSIM to simulate a boost converter with a 4-layer voltage multiplier, and then compared it with the experimental results to verify that the built simulation circuit and the designed pulse width modulation controller are correct use of component parameters.

    第一章 緒論 1 1.1 引言 1 1.2 研究目的 2 1.3 研究方法 2 1.4 研究架構 4 第二章 升壓轉換器原理 6 2.1 升壓轉換器架構 6 2.2 連續導通模式 7 2.3 邊界導通模式 11 2.4 不連續導通模式 13 第三章 升壓轉換器結合電壓倍乘器原理 17 3.1 升壓轉換器結合電壓倍乘器介紹 17 3.1.1 升壓轉換器結合電壓倍乘器操作於連續導通模式 20 3.1.2 升壓轉換器結合電壓倍乘器操作於不連續導通模式 22 3.2 升壓轉換器之控制晶片 25 3.3 峰值電流模式控制 28 3.3.1 跨導誤差放大器 29 3.3.2 閂鎖器 30 3.3.3 斜率補償 33 3.4 電路損失介紹 38 3.4.1 功率開關損失 38 3.4.2 二極體損失 42 3.4.3 電感損失 43 3.5 RC緩振電路 44 第四章 電路設計與功能介紹 48 4.1 電路規格與固定參數 48 4.2 升壓轉換器結合電壓倍乘器推導結果 49 4.3 電感器設計與計算 50 4.3.1 升壓層電感設計與計算 50 4.3.2 倍乘層電感設計與計算 52 4.4 升壓轉換器結合電壓倍乘器各元件之計算 53 4.4.1 二極體規格計算 53 4.4.2 功率開關規格計算 54 4.4.3 倍乘層電容規格計算 55 4.5 控制晶片周邊元件之參數設計 56 4.5.1 控制晶片振盪器頻率引腳 56 4.5.2 回授與補償迴路引腳 56 4.5.3 電流檢測引腳 57 4.5.4 欠電壓鎖定引腳 58 4.5.5 驅動電壓引腳 59 4.6 PSIM模擬結果 59 4.6.1 跨導誤差放大器模擬電路 61 4.6.2 脈波寬度調變模擬電路 62 第五章 實驗結果與討論 64 5.1 緩振電路實驗結果 66 5.1.1 RC緩振電路量測 66 5.1.2 RC緩振電路結果比較 67 5.2 升壓轉換器結合電壓倍乘器實驗波形 68 5.2.1 升壓轉換器結合電壓倍乘器各層之電壓 69 5.2.2 升壓轉換器結合電壓倍乘器半載實驗波形 71 5.2.3 升壓轉換器結合電壓倍乘器滿載實驗波形 77 5.3 升壓轉換器結合電壓倍乘器之轉換效率 86 5.3.1 功率開關損失計算 86 5.3.2 二極體損失 89 5.3.3 電感損失 92 5.3.4 緩振電路損失 94 5.3.5 損失分布圖 94 第六章 結論與未來展望 97 6.1 結論 97 6.2 未來展望 98 參考文獻 100

    T. W. Hariyadi and A. Adriansyah, “Comparison of dc–dc converters boost type in optimizing the use of solar panels,” in Proc. The International Conference on Broadband Communications, Wireless Sensors and Powering (BCWSP), 28–30, pp.189–194, Sep. 2020.
    A. M. S. S. Andrade and M. L. D. S. Martins, “Study and analysis of pulsating and nonpulsating input and output current of ultrahigh-voltage gain hybrid dc–dc converters,” IEEE Trans. Ind. Electron., vol. 67, no. 5, pp. 3776–3787, May 2020.
    S. W. Lee and H. L. Do, “High step-up coupled-inductor cascade boost dc–dc converter with lossless passive snubber,” IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 7753–7761, Oct. 2018.
    T. Kim, D. Feng, M. Jang, and V. G. Agelidis, “Common mode noise analysis for cascaded boost converter with silicon carbide devices,” IEEE Trans. Ind. Electron., vol. 32, no. 3, pp. 1917–1926, Mar. 2017.
    A. Babanezhad and R. Beiranvand, “A multiphase voltage multiplier circuit with interleaved boost converter,” in Proc. The 14th Annual Power Electronics and Drive: Systems and Technologies Conference (PEDSTC), pp. 1–6, 2023.
    Y. Hu, J. Wu, W. Cao, W. Xiao, P. Li, S. J. Finney, and Y. Li, “Ultrahigh step–up dc–dc converter for distributed generation by three degrees of freedom (3DoF) approach,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4930–4941, July 2016.
    A. M. S. S. Andrade, T. M. K. Faiste, R. A. Guisso, and A. Toebe, “Hybrid high voltage gain transformerless dc–dc converter,” IEEE Trans. Ind. Electron., vol. 69, no. 3, pp. 2470–2479, Mar. 2022.
    P. Mohseni, S. H. Hosseini, and M. Maalandish, “A new soft switching dc–dc converter with high voltage gain capability,” IEEE Trans. Ind. Electron., vol. 67, no. 9, pp. 7386–7398, Sep. 2020.
    Y. Hu, R. Zeng, W.Cao, J. Zhang, and S. J. Finney, “Design of a modular high step-up ratio dc–dc converter for hvdc applications integrating offshore wind power,” IEEE Trans. Ind. Electron., vol. 63, no. 4, pp. 2190–2202, Apr. 2016.
    B. P. Baddipadiga and M. Ferdowsi, “A high-voltage-gain dc–dc converter based on modified dickson charge pump voltage multiplier,” IEEE Trans. Power Electron., vol. 32, no. 10, pp. 7707–7715, Oct. 2017.
    L. Schmitz, D. C. Martins, and R. F. Coelho, “Comprehensive conception of high step-up dc–dc converters with coupled inductor and voltage multipliers techniques,” IEEE Trans. Circuits Syst., vol. 67, no. 6, pp. 2140–2151, June 2020.
    W. Jiang, Y. F. Zhou, and J. N. Chen, “Modeling and simulation of Boost converter in CCM and DCM,” in Proc. IEEE Int. Conf. Power Electron. Intell. Syst. (PEITS), Dec. 2019.
    Texas Instruments Inc., “Application Report-Understanding Boost Power Stage in Switchmode Power Supplies,” Feb. 2006. [Online] Available: https://www.ti.com/lit/an/slva061/slva061.pdf?ts=1719539693784&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FUC2845%253Fbm-verify%253DAAQAAAAJ_____2AIX9SC36TIkeTeLAaNqoOPQrv7qTXUD8fX1VQyKsYTP9bT46snNRKDv3ZzvJX4SWTh99FMumjb5LUm2o4d3R0RRKEt4WF2rRGdz8SW3B-kYClByZm6V4xvHFfTC-GBxB4zX7v3n4pD-0lXe4jFVLHg0o27aVIFRl4ZqBu59NK-11avExVenjMNDnPU12H04lfOj23Vx4fSoH5qRiIRPwggScvMnRsBBPKHcmUSnw0FZfCleY8Oe8jn2WTdBxS7-yjmQdMpMRLUkCYYjx97ztaBGn2gCtLfDbkU4X6IzKDnJDxDXn6DvswZdQ0EXvCQpyqJmX755ugOtEyGpxosJsU6sIJrROgRq2kG0uk12wJC2SJW
    D. W. Hart, 電力電子學,歐勝源(譯),美商麥格羅-希爾國際股份有限公司台灣分公司,台北市中正區博愛路,2013年12月。
    Texas Instruments Inc., “LM3481 high-efficiency controller for boost, sepic and flyback dc/dc converters,” Nov. 2023. [Online] Available: https://www.ti.com/lit/ds/symlink/lm3481.pdf?ts=1714015497212&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252Fzh-tw%252FLM3481
    Texas Instruments Inc., “Application Brief Current Mode Control in Switching Power Supplies,” Dec. 2020. [Online] Available: https://www.ti.com/lit/ab/sboa187e/sboa187e.pdf?ts=1714016053922&ref_url=https%253A%252F%252Fwww.google.com%252F
    Texas Instruments Inc., “Implementing peak current mode control of a switch-mode power supply with a single microcontroller,” Jul. 2012. [Online] Available: https://www.ti.com/lit/wp/spry205/spry205.pdf?ts=1714032951393&ref_url=https%253A%252F%252Fwww.google.com%252F
    Robert W. Erickson and Dragan Maksimovic, “Fundamentals of Power Electronics,” 2nd edition, 233 Spring Street, New York, NY 10013, USA, 2001.
    B. Bryant, and M. K. Kazimierczuk, “Voltage Loop of Boost PWM DC–DC Converters With Peak Current-Mode Control,” IEEE Trans. Circuits Syst., vol. 53, no. 1, pp. 90–105, Jan. 2006.
    Texas Instruments Inc., “Demystifying Type II and Type III Compensators Using Op-Amp and OTA for DC/DC Converters,” Jul. 2012. [Online] Available: https://www.ti.com/lit/an/slva662/slva662.pdf?ts=1714953700937&ref_url=https%253A%252F%252Fwww.google.com%252F
    Texas Instruments Inc., “Understanding and Applying Current-Mode Control Theory,” Oct. 2007. [Online] Available: https://www.ti.com/lit/an/snva555/snva555.pdf?ts=1714953459377&ref_url=https%253A%252F%252Fwww.google.com%252F
    Texas Instruments Inc., “Application Note - Basics of Ideal Diodes,” Feb. 2021. Available: https://www.ti.com/lit/an/slvae57b/slvae57b.pdf
    Infineon Technologies Inc., “Application Note - The HEXFRED Ultrafast Diode in Power Switching Circuits,” 1992. [Online] Available: https://www.infineon.com/dgdl/an989.pdf?fileId=5546d462533600a40153559fa625124d
    葉倍宏,電子學上,第三版,新文開發出版股份有限公司,新北市中和區中山路二段,2021年07月
    Dongub Inc. “POWDER CORES, MPP/High Flux/Sendust/Power Flux/Ultal Flux,” 2011. [Online] Available: https://docplayer.gr/85774604-Powder-cores-mpp-high-flux-sendust-power-flux-ultral-flux.html
    K. Yatsugi, K. Nomura, and Y. Hattori, “Analytical technique for designing an RC snubber circuit for ringing suppression in a Phase-Leg configuration,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 4736–4745, Jun. 2018.
    Alpha Omega Semiconductor Inc., “SNUBBER DESIGN FOR NOISE REDUCTION IN SWITCHING CIRCUITS,” May 2007. [Online] Available: https://www.aosmd.com/res/application_notes/mosfets/AN100_Snubber_Design_for_Noise_Reduction.pdf
    X. D. Liu, L. Ge, W. Fang, Y. F. Liu, “An Algorithm for Buck-Boost Converter Based on the Principle of Capacitor Charge Balance,” IEEE Conference on Industrial Electronics and Applications (ICIEA), Jun. 2011.
    HOW2POWER TODAY, “Selecting An Inductor Value For A DC-DC Boost Converter,” Jul. 2018. [Online] Available: https://www.how2power.com/pdf_view.php?url=/newsletters/1807/articles/H2PToday1807_design_ONSemi.pdf
    Diodes Incorporated Inc., “PDU620CT-13,” Mar. 2016. [Online] Available: https://www.diodes.com/assets/Datasheets/ds30622.pdf
    Infineon Technologies Inc., “IPP120N20NFD,” Feb. 2014. [Online] Available: https://www.mouser.tw/datasheet/2/196/Infineon_IPP120N20NFD_DS_v02_00_en-1731951.pdf
    Texas Instruments Inc., “Application Report- Input and Output Capacitor Selection,” Feb. 2006. [Online] Available: https://www.ti.com/lit/an/slta055/slta055.pdf?ts=1715135948423&ref_url=https%253A%252F%252Fwww.google.com%252F
    Y. J. Woo, H. P. Le, G. H. Cho, G. H. Cho, and S. I. Kim, “Load-Independent Control of Switching DC-DC Converters with Freewheeling Current Feedback,” IEEE Journal of Solid-State Circuits, Feb. 2008.
    H. P. Forghani-zadeh, and G. A. Rincon-Mora, “Current-sensing techniques for DC-DC converters,” in Proc. IEEE The 45th Midwest Symposium on Circuits and Systems (MWSCAS), vol. 2, pp. II-II Aug. 2002.
    M. H. Cho, W. H. Lee, J. S. Kim, Y. H. Sa, H. S. Kim, and H. W. Cha, “Development of undervoltage lockout (UVLO) circuit configurated Schmitt trigger,” in Proc. IEEE International SoC Design Conference (ISOCC), pp. 59–60, Nov. 2015.

    無法下載圖示 本全文未授權公開
    QR CODE