簡易檢索 / 詳目顯示

研究生: 吳冠蓁
Wu, Kuan-chen
論文名稱: 不同運動休息比高強度循環運動對心肺適能之影響
Effects of high-intensity circuit exercise with different work-rest ratio on cardiorespiratory capacity
指導教授: 鄭景峰
Cheng, Ching-Feng
口試委員: 郭堉圻
Kuo, Yu-Chi
周峻忠
Chou, Chun-Chung
鄭景峰
Cheng, Ching-Feng
口試日期: 2023/07/26
學位類別: 碩士
Master
系所名稱: 體育與運動科學系
Department of Physical Education and Sport Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 72
中文關鍵詞: 有氧能力徒手訓練能量貢獻運動負荷高強度間歇訓練
英文關鍵詞: aerobic capacity, body-weight exercise, energy system contribution, exercise load, high-intensity interval training
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301547
論文種類: 學術論文
相關次數: 點閱:195下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:探討不同運動休息比之高強度循環運動 (high-intensity circuit exercise, HICE) 對於心肺適能與能量使用比例之影響。方法:本研究共招募12名健康男性。依平衡次序進行相同總運動時間之HICE20 (20秒:10秒運動休息比) 與HICE30 (30秒:10秒運動休息比) 兩種實驗介入。HICE的動作模式包括抬膝原地跑、弓步蹲、深蹲跳與波比操。在HICE運動期間測量攝氧量、心跳率、運動自覺強度 (rating of perceived exertion, RPE) 與血乳酸濃度,並計算動作反覆次數、花費在高強度運動之累積時間、分組 (運動初期 [S1]、運動中段 [SMid] 與運動末期 [SEnd] ) 之攝氧量與心跳率以及能量使用比例。結果:不同運動休息比之HICE,誘發之總平均攝氧量、心跳率、RPE、血乳酸濃度、高強度運動累積時間與能量使用,均未達顯著差異。然而,HICE30在S1的平均攝氧量與平均心跳率,均顯著高於HICE20 (p < .05),不過,在時間因子部分,HICE20到SEnd時仍能維持高於S1之心肺刺激 (S1 vs. SMid vs. SEnd,61.33 ± 6.30%VO2max vs. 87.52 ± 7.05%VO2max vs. 86.08 ± 5.68%VO2max),而HICE30在SEnd時,則顯著下降並低於SMid (S1 vs. SMid vs. SEnd,68.75 ± 6.79%VO2max vs. 89.36 ± 7.23%VO2max vs. 85.15 ± 7.70%VO2max)。HICE30的總反覆次數顯著高於HICE20 (HICE20 vs. HICE30,782.10 ± 132.70次vs. 867.90 ± 126.50次, p < .05)。結論:改變HICE運動休息比不影響心肺刺激與能量消耗分佈。不過,相較於HICE30,HICE20在SEnd更能維持較高的心肺刺激。

    Purpose: To examine the effects of high-intensity circuit exercise (HICE) with different work-rest ratio on cardiorespiratory capacity and energy usage. Methods: 12 male collegiate students were required to perform 2 treatments in repeated measure and counter-balance order, including HICE20 (20s: 10s work: rest ratio) and HICE30 (30s: 10s work: rest ratio) with equal exercise duration. High knee run, lunge, squat jump and burpee were performed in the workout. Oxygen consumption (VO2), heart rate (HR), rating of perceived exertion (RPE) and blood lactate were recorded during HICE. The number of repetitions, exercise time in high-intensity, VO2 and HR during different phases of exercise (early stage, S1; mid-stage, SMid and last stage, SEnd) and energy usage were calaulated during HICE. Results: No significant differences were found in the average VO2, HR, RPE, blood lactate, the exercise time of high-intensity and energy contribution among treatments. However, VO2 and HR from HICE30 were significantly higher than those in HICE20 during S1 (p < .05). Also, HICE20 appears to sustain in high level of cardiovascular stimulation until SEnd (S1 vs. SMid vs. SEnd,61.33 ± 6.30%maximum oxygen consumption [VO2max] vs. 87.52 ± 7.05%VO2max vs. 86.08 ± 5.68%VO2max, p < .05), while VO2 in HICE30 gradually decreased after SMid (S1 vs. SMid vs. SEnd,68.75 ± 6.79%VO2max vs. 89.36 ± 7.23%VO2max vs. 85.15 ± 7.70%VO2max, p < .05). The number of repetitions in HICE30 was significantly higher than that in HICE20 (HICE20 vs. HICE30,782.10 ± 132.70 times vs. 867.90 ± 126.50 times, p < .05). Conclusion: Manipulation of work: rest ratio in HICE showed no impact on cardiovascular stimulation and energy contribution. However, compared to HICE30, HICE20 remained elevated cardiovascular stimulation levels during SEnd.

    第壹章 緒論1   第一節 前言.1   第二節 研究重要性4   第三節 研究目的4   第四節 研究假設4   第五節 研究範圍與限制5   第六節 名詞操作性定義5 第貳章 文獻探討8 第一節 HICE之介紹8 第二節 HICE之不同訓練變項對心肺適能之影響10 第三節 總結18 第參章 研究方法19 第一節 受試對象19 第二節 實驗日期與地點19 第三節 研究工具19 第四節 研究設計20 第五節 實驗方法與步驟21 第六節 資料處理與分析26 第七節 統計方法29 第肆章 結果30   第一節 受試者基本資料30   第二節 不同運動休息比高強度循環運動對心肺刺激之影響30   第三節 不同運動休息比高強度循環運動對運動中能量使用之影響45 第伍章 討論49   第一節 不同運動休息比高強度循環運動對心肺適能之影響49   第二節 不同運動休息比高強度循環運動對運動中能量使用之影響52   第三節 結論與建議55 參考文獻57 附錄67   附錄一 受試者健康狀況調查表67   附錄二 受試者須知68   附錄三 受試者同意書69   附錄四 實驗記錄表70

    教育部體育署i運動資訊平台 (2023年1月3日)。110年運動現況調查案結案報告書。取自https://isports.sa.gov.tw/apps/Download.aspx?SYS=TIS&MENU_CD=M07&ITEM_CD=T01&MENU_PRG_CD=4&ITEM_PRG_CD=2
    郭育瑄、張博勛、紀凱程、鄭景峰 (2019)。高強度循環訓練對健康男性有氧適能和肌肉表現之影響。大專體育學刊,21(1),72-83。https://doi.org/10.5297/ser.201903_21(1).0006
    潘旗學、賴銀豐、楊佳琇、郭育瑄、鄭景峰 (2019)。活化後增能作用對於運動耐受性與攝氧動力學之影響。運動生理暨體能學報,28,23-34。https://doi.org/10.6127/JEPF.201906_28.0003
    Alcaraz, P. E., Sánchez-Lorente, J., & Blazevich, A. J. (2008). Physical performance and cardiovascular responses to an acute bout of heavy resistance circuit training versus traditional strength training. Journal of Strength and Conditioning Research, 22(3), 667-671. https://doi.org/10.1519/JSC.0b013e31816a588f
    Alonso-Férnández, D., Fernández-Rodriguez, R., & Gutiérrez-Sánchez, Á. (2017). Effect of a HIIT programme vs. extensive continuous training on inexperienced individuals. Apunts. Educació Física i Esports, 130, 84-94. https://doi.org/10.5672/apunts.2014-0983.es.(2017/4).130.07
    Archila, L. R., Bostad, W., Joyner, M. J., & Gibala, M. J. (2021). Simple bodyweight training improves cardiorespiratory fitness with minimal time commitment: A contemporary application of the 5BX approach. International Journal of Exercise Science, 14(3), 93-100. https://doi.org/10.1249/01.mss.0000685140.58681.95
    Armas, C., Kowalsky, R. J., & Hearon, C. M. (2020) Comparison of acute cardiometabolic responses in a 7-minute body weight circuit to 7-minute HIIT training protocol. International Journal of Exercise Science, 13(2), 395-409. https://doi.org/10.1123/pes.2020-0248
    Atakan, M. M., Li, Y., Koşar, Ş. N., Turnagöl, H. H., & Yan, X. (2021). Evidence-based effects of high-intensity interval training on exercise capacity and health: A review with historical perspective. International Journal of Environmental Research and Public Health, 18(13), 7201. https://doi.org/10.3390/ijerph18137201
    Beneke R. (2003). Maximal lactate steady state concentration (MLSS): Experimental and modelling approaches. European Journal of Applied Physiology, 88(4-5), 361-369. https://doi.org/10.1007/s00421-002-0713-2
    Beneke, R., Beyer, T., Jachner, C., Erasmus, J., & Hütler, M. (2004). Energetics of karate kumite. European Journal of Applied Physiology, 92, 518-523. https://doi.org/10.1007/s00421-004-1073-x
    Bertuzzi, R., Kiss, M. A., Damasceno, M., Oliveira, R. S., & Lima-Silva, A. E. (2015). Association between anaerobic components of the maximal accumulated oxygen deficit and 30-second Wingate test. Brazilian Journal of Medical and Biological Research, 48(3), 261-266. https://doi.org/10.1590/1414-431X20144043
    Bertuzzi, R., Melegati, J., Bueno, S., Ghiarone, T., Pasqua, L. A., Gáspari, A. F., Lima-Silva, A. E., & Goldman, A. (2016). GEDAE-LaB: A free Software to calculate the energy system contributions during exercise. PloS One, 11(1), e0145733. https://doi.org/10.1371/journal.pone.0145733
    Bhati, P., Bansal, V., & Moiz, J. (2019). Comparison of different volumes of high intensity interval training on cardiac autonomic function in sedentary young women. International Journal of Adolescent Medicine and Health, 31(6). https://doi.org/10.1515/ijamh-2017-0073
    Birkett, S. T., Nichols, S., Sawrey, R., Gleadall-Siddall, D., McGregor, G., & Ingle, L. (2019). The effects of low-volume high-intensity interval training and circuit training on maximal oxygen uptake. Sport Sciences for Health, 15(2), 443-451. https://doi.org/10.1007/s11332-019-00552-2
    Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377-381. https://doi.org/10.1249/00005768-198205000-00012
    Buchheit M. (2010). Performance and physiological responses to repeated-sprint and jump sequences. European Journal of Applied Physiology, 110(5), 1007-1018. https://doi.org/10.1007/s00421-010-1587-3
    Buchheit, M., Bishop, D., Haydar, B., Nakamura, F. Y., & Ahmaidi, S. (2010). Physiological responses to shuttle repeated-sprint running. International Journal of Sports Medicine, 31(6), 402-409. https://doi.org/10.1055/s-0030-1249620
    Buchheit, M., & Laursen, P. B. (2013). High-intensity interval training, solutions to the programming puzzle: Part I: Cardiopulmonary emphasis. Sports Medicine, 43(5), 313-338. https://doi.org/10.1007/s40279-013-0029-x
    Campos, F. A., Bertuzzi, R., Dourado, A. C., Santos, V. G., & Franchini, E. (2012). Energy demands in taekwondo athletes during combat simulation. European Journal of Applied Physiology, 112(4), 1221-1228. https://doi.org/10.1007/s00421-011-2071-4
    Carneiro, M. A. S., de Oliveira, A. A., Martins, F. M., Souza, A. P., Nunes, P. R. P., & Orsatti, F. L. (2018). High-intensity interval body weight training promotes different adaptations to combined training in body composition and muscle strength in young women. Science and Sports, 33(3), e105-e113. https://doi.org/10.1016/j.scispo.2017.11.001
    Davis, P., Leithäuser, R. M., & Beneke, R. (2014). The energetics of semicontact 3 x 2-min amateur boxing. International Journal of Sports Physiology and Performance, 9(2), 233-239. https://doi.org/10.1123/IJSPP.2013-0006
    de Souza, H. L. R., Arriel, R. A., Mota, G. R., Hohl, R., & Marocolo, M. (2021). Does ischemic preconditioning really improve performance or it is just a placebo effect?. PloS One, 16(5), e0250572. https://doi.org/10.1371/journal.pone.0250572
    di Prampero, P. E., & Ferretti, G. (1999). The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts. Respiration Physiology, 118(2-3), 103-115. https://doi.org/10.1016/s0034-5687(99)00083-3
    Domaradzki, J., Cichy, I., Rokita, A., & Popowczak, M. (2020). Effects of tabata training during physical education classes on body composition, aerobic capacity, and anaerobic performance of under-, normal- and overweight adolescents. International Journal of Environmental Research and Public Health, 17(3), 876. https://doi.org/10.3390/ijerph17030876
    Emberts, T., Porcari, J., Dobers-Tein, S., Steffen, J., & Foster, C. (2013). Exercise intensity and energy expenditure of a tabata workout. Journal of Sports Science and Medicine, 12(3), 612-613. https://doi.org/10.1249/01.MSS.0000401320.26203.ed
    Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. https://doi.org/10.3758/BRM.41.4.1149
    Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., Nieman, D. C., Swain, D. P. (2011). American college of sports medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Medicine and Science in Sports and Exercise, 43(7), 1334-1359. https://doi.org/10.1249/MSS.0b013e318213fefb
    García-Hermoso, A., Cerrillo-Urbina, A. J., Herrera-Valenzuela, T., Cristi-Montero, C., Saavedra, J. M., & Martínez-Vizcaíno, V. (2016). Is high-intensity interval training more effective on improving cardiometabolic risk and aerobic capacity than other forms of exercise in overweight and obese youth? A meta-analysis. Obesity Reviews, 17(6), 531-540. https://doi.org/10.1111/obr.12395
    Gastin, P. B., & Lawson, D. L. (1994). Influence of training status on maximal accumulated oxygen deficit during all-out cycle exercise. European Journal of Applied Physiology and Occupational Physiology, 69(4), 321-330. https://doi.org/10.1007/BF00392038
    Gist, N. H., Freese, E. C., Ryan, T. E., & Cureton, K. J. (2015). Effects of low-volume, high-intensity whole-body calisthenics on army ROTC cadets. Military Medicine, 180(5), 492-498. https://doi.org/10.7205/MILMED-D-14-00277
    Gosselin, L. E., Kozlowski, K. F., DeVinney-Boymel, L., & Hambridge, C. (2012). Metabolic response of different high-intensity aerobic interval exercise protocols. Journal of Strength and Conditioning Research, 26(10), 2866–2871. https://doi.org/10.1519/JSC.0b013e318241e13d
    Hesketh, K. L., Church, H., Kinnafick, F., Shepherd, S. O., Wagenmakers, A. J. M., Cocks, M., & Strauss, J. A. (2021). Evidence-based vs. social media based high-intensity interval training protocols: Physiological and perceptual responses. PloS One, 16(9), e0257685. https://doi.org/10.1371/journal.pone.0257685
    Islam, H., Townsend, L. K., & Hazell, T. J. (2017). Modified sprint interval training protocols. Part I. Physiological responses. Applied Physiology, Nutrition and Metabolism, 42(4), 339–346. https://doi.org/10.1139/apnm-2016-0478
    Kaufmann, S., Latzel, R., Kloos, E., Beneke, R., & Hoos, O. (2021). Influence of training specialization on energetics of intermittent shuttle runs. Journal of Exercise Physiology Online, 24(2), 22-33. https://doi.org/10.1007/s00421-015-3180-2
    Klika, B., & Jordan, C. (2013). High-intensity circuit training using body weight: Maximum results with minimal investment. ACSM's Health & Fitness Journal, 17(3), 8-13. https://doi.org/10.1249/FIT.0b013e31828cb1e8
    La Monica, M. B., Fukuda, D. H., Starling-Smith, T. M., Clark, N. W., & Panissa, V. L. G. (2020). Alterations in energy system contribution following upper body sprint interval training. European Journal of Applied Physiology, 120(3), 643–651. https://doi.org/10.1007/s00421-020-04304-w
    Laurent, C. M., Green, J. M., Bishop, P. A., Sjökvist, J., Schumacker, R. E., Richardson, M. T., & Curtner-Smith, M. (2011). A practical approach to monitoring recovery: Development of a perceived recovery status scale. Journal of Strength and Conditioning Research, 25(3), 620-628. https://doi.org/10.1519/JSC.0b013e3181c69ec6
    Ludin, A. F. M., Saat, N. Z. M., Umar, N. A., & Haari, N. M. (2015). High intensity circuit training on body composition, cardiovascular risk factors and physical fitness status among overweight and obese female students. Journal of Physical Activity, Sports and Exercise, 3(1), 40–48.
    Machado, A. F., Baker, J. S., Figueira Junior, A. J., & Bocalini, D. S. (2019). High-intensity interval training using whole-body exercises: Training recommendations and methodological overview. Clinical Physiology and Functional Imaging, 39(6), 378-383. https://doi.org/10.1111/cpf.12433
    Machado, A. F., Nunes, R. D. A. M., de Souza Vale, R. G., Rica, R. L., Junior, A. F., & Bocalini, D. S. (2017). High intensity interval training with body weight: The new calisthenics? Manual Therapy, Posturology and Rehabilitation Journal, 15(448), 1-4. https://doi.org/10.17784/mtprehabjournal.2017.15.448
    Machado, A. F., Reis, V. M., Rica, R. L., Baker, J. S., Figueira Junior, A. J., & Bocalini, D. S. (2020). Energy expenditure and intensity of HIIT bodywork® session. Motriz: Revista de Educação Física, 26(4). https://doi.org/10.1590/s1980-6574202000040083
    Martins, F. M., de Paula Souza, A., Nunes, P., Michelin, M. A., Murta, E., Resende, E., de Oliveira, E. P., & Orsatti, F. L. (2018). High-intensity body weight training is comparable to combined training in changes in muscle mass, physical performance, inflammatory markers and metabolic health in postmenopausal women at high risk for type 2 diabetes mellitus: A randomized controlled clinical trial. Experimental Gerontology, 107, 108-115. https://doi.org/10.1016/j.exger.2018.02.016
    McMahon, S., & Jenkins, D. (2002). Factors affecting the rate of phosphocreatine resynthesis following intense exercise. Sports Medicine, 32(12), 761-784. https://doi.org/10.2165/00007256-200232120-00002
    McRae, G., Payne, A., Zelt, J. G., Scribbans, T. D., Jung, M. E., Little, J. P., & Gurd, B. J. (2012). Extremely low volume, whole-body aerobic-resistance training improves aerobic fitness and muscular endurance in females. Applied Physiology, Nutrition, and Metabolism, 37(6), 1124-1131. https://doi.org/10.1139/h2012-093
    Menz, V., Marterer, N., Amin, S. B., Faulhaber, M., Hansen, A. B., & Lawley, J. S. (2019). Functional vs. running low-volume high-intensity interval training: Effects on VO2max and muscular endurance. Journal of Sports Science and Medicine, 18(3), 497–504.
    Menzies, P., Menzies, C., McIntyre, L., Paterson, P., Wilson, J., & Kemi, O. J. (2010). Blood lactate clearance during active recovery after an intense running bout depends on the intensity of the active recovery. Journal of Sports Sciences, 28(9), 975-982. https://doi.org/10.1080/02640414.2010.481721
    Milioni, F., Zagatto, A. M., Barbieri, R. A., Andrade, V. L., Dos Santos, J. W., Gobatto, C. A., da Silva, A. S., Santiago, P. R., & Papoti, M. (2017). Energy systems contribution in the running-based anaerobic sprint test. International Journal of Sports Medicine, 38(3), 226–232. https://doi.org/10.1055/s-0042-117722
    Millet, S. P., Candau, R., Fattori, P., Bignet, F., & Varray, A. (2003). VO2 responses to different intermittent runs at velocity associated with VO2max. Canadian Journal of Applied Physiology, 28(3), 410-423. https://doi.org/10.1139/h03-030
    Nakagata, T., Yamada, Y., & Naito, H. (2019). Metabolic equivalents of body weight resistance exercise with slow movement in older adults using indirect calorimetry. Applied Physiology, Nutrition, and Metabolism, 44(11), 1254-1257. https://doi.org/10.1139/apnm-2018-0882
    Nuñez, T. P., Amorim, F. T., Beltz, N. M., Mermier, C. M., Moriarty, T. A., Nava, R. C., VanDusseldorp, T. A., & Kravitz, L. (2020). Metabolic effects of two high-intensity circuit training protocols: Does sequence matter? Journal of Exercise Science and Fitness, 18(1), 14-20. https://doi.org/10.1016/j.jesf.2019.08.001
    O'Leary, T. J., Collett, J., Howells, K., & Morris, M. G. (2017). Endurance capacity and neuromuscular fatigue following high‐vs moderate‐intensity endurance training: A randomized trial. Scandinavian Journal of Medicine and Science in Sports, 27(12), 1648-1661. http://dx.doi.org/10.1111/sms.12854
    Olson, M. (2013). Tabata interval exercise: energy expenditure and post-exercise responses. Medicine Science Sports Exercise, 45, S420.
    Olson, M. (2014). Tabata: It’s a HIIT!. ACSM'S Health and Fitness Journal, 18(5), 17-24. https://doi.org/10.1249/FIT.0000000000000065
    Panissa, V. L. G., Fukuda, D. H., Caldeira, R. S., Gerosa-Neto, J., Lira, F. S., Zagatto, A. M., & Franchini, E. (2018). Is oxygen uptake measurement enough to estimate energy expenditure during high-intensity intermittent exercise? Quantification of anaerobic contribution by different methods. Frontiers in Physiology, 9, 868. https://doi.org/10.3389/fphys.2018.00868
    Philippot, A., Moulin, P., Charon, M. H., Balestra, C., Dubois, V., de Timary, P., De Volder, A., Bleyenheuft, Y., & Lambrechts, K. (2022). Feasibility of online high-intensity interval training (HIIT) on psychological symptoms in students in lockdown during the COVID-19 pandemic: A randomized controlled trial. Frontiers in Psychiatry, 13, 904283. https://doi.org/10.3389/fpsyt.2022.904283
    Polito, M. D., & Farinatti, P. T. V. (2006). Blood pressure behavior after counter-resistance exercises: A systematic review on determining variables and possible mechanisms. Revista Brasileira de Medicina do Esporte, 12, 386-392. http://dx.doi.org/10.1590/S1517-86922006000600017
    Protzen, G. V., Bartel, C., Coswig, V. S., Gentil, P., & Del Vecchio, F. B. (2020). Physiological aspects and energetic contribution in 20s:10s high-intensity interval exercise at different intensities. Peer J, 8, e9791. https://doi.org/10.7717/peerj.9791
    Rebar, A. L., Johnston, R., Paterson, J. L., Short, C. E., Schoeppe, S., & Vandelanotte, C. (2019). A test of how Australian adults allocate time for physical activity. Behavioral Medicine, 45(1), 1-6. https://doi.org/10.1080/08964289.2017.1361902
    Riegler, M., Stotz, G., Fitzgerald, K., Munoz, C. K., Lewis, J., Ring, S., & Astorino, T. A. (2017). Acute responses to the 7-minute workout. Journal of Strength and Conditioning Research, 31(9), 2572-2578. https://doi.org/10.1519/JSC.0000000000002073
    Rosenblat, M. A., Granata, C., & Thomas, S. G. (2022). Effect of interval training on the factors influencing maximal oxygen consumption: A systematic review and meta-analysis. Sports Medicine, 52(6), 1329-1352. https://doi.org/10.1007/s40279-021-01624-5
    Rosenblat, M. A., Perrotta, A. S., & Thomas, S. G. (2020). Effect of high-intensity interval training versus sprint interval training on time-trial performance: A systematic review and meta-analysis. Sports Medicine, 50(6), 1145-1161. https://doi.org/10.1007/s40279-020-01264-1
    Rozenek, R., Funato, K., Kubo, J., Hoshikawa, M., & Matsuo, A. (2007). Physiological responses to interval training sessions at velocities associated with VO2max. Journal of Strength and Conditioning Research, 21(1), 188-192. https://doi.org/10.1519/R-19325.1
    Sabag, A., Little, J. P., & Johnson, N. A. (2022). Low-volume high-intensity interval training for cardiometabolic health. The Journal of Physiology, 600(5), 1013-1026. https://doi.org/10.1113/JP281210
    Sardinha, L. B., Magalhães, J. P., Santos, D. A., & Hetherington-Rauth, M. (2023). Intensity matters: Impact of physical activity energy expenditure at moderate and vigorous intensity on total and abdominal obesity in children. European Journal of Clinical Nutrition, 77(5), 546–550. https://doi.org/10.1038/s41430-022-01242-y
    Schaun, G. Z., Pinto, S. S., Silva, M. R., Dolinski, D. B., & Alberton, C. L. (2018). Whole-body high-intensity interval training induce similar cardiorespiratory adaptations compared with traditional high-intensity interval training and moderate-intensity continuous training in healthy men. Journal of Strength and Conditioning Research, 32(10), 2730-2742. https://doi.org/10.1519/JSC.0000000000002594
    Schmidt, D., Anderson, K., Graff, M., & Strutz, V. (2016). The effect of high-intensity circuit training on physical fitness. The Journal of Sports Medicine and Physical Fitness, 56(5), 534-540. https://doi.org/10.5604/1232406X.1229081
    Schwendinger, F., & Pocecco, E. (2020). Counteracting physical inactivity during the COVID-19 pandemic: Evidence-based recommendations for home-based exercise. International Journal of Environmental Research and Public Health, 17(11), 3909. https://doi.org/10.3390/ijerph17113909
    Seiler, S., Jøranson, K., Olesen, B. V., & Hetlelid, K. J. (2013). Adaptations to aerobic interval training: Interactive effects of exercise intensity and total work duration. Scandinavian Journal of Medicine and Science in Sports, 23(1), 74-83. https://doi.org/10.1111/j.1600-0838.2011.01351.x
    Smith, T. P., Coombes, J. S., & Geraghty, D. P. (2003). Optimising high-intensity treadmill training using the running speed at maximal O2 uptake and the time for which this can be maintained. European Journal of Applied Physiology, 89(3), 337-343. https://doi.org/10.1007/s00421-003-0806-6
    Sperlich, B., Hahn, L. S., Edel, A., Behr, T., Helmprobst, J., Leppich, R., Wallmann-Sperlich, B., & Holmberg, H. C. (2018). A 4-week intervention involving mobile-based daily 6-minute micro-sessions of functional high-intensity circuit training improves strength and quality of life, but not cardio-respiratory fitness of young untrained adults. Frontiers in Physiology, 9, 423. https://doi.org/10.3389/fphys.2018.00423
    Sultana, R. N., Sabag, A., Keating, S. E., & Johnson, N. A. (2019). The effect of low-volume high-intensity interval training on body composition and cardiorespiratory fitness: A systematic review and meta-analysis. Sports Medicine, 49(11), 1687-1721. https://doi.org/10.1007/s40279-019-01167-w
    Tabata I. (2019). Tabata training: One of the most energetically effective high-intensity intermittent training methods. Journal of Physiological Sciences, 69(4), 559-572. https://doi.org/10.1007/s12576-019-00676-7
    Tabata, I., Irisawa, K., Kouzaki, M., Nishimura, K., Ogita, F., & Miyachi, M. (1997). Metabolic profile of high intensity intermittent exercises. Medicine and Science in Sports and Exercise, 29(3), 390-395. https://doi.org/10.1097/00005768-199703000-00015
    Tanner, A. V., Nielsen, B. V., & Allgrove, J. (2014). Salivary and plasma cortisol and testosterone responses to interval and tempo runs and a bodyweight only circuit session in endurance-trained men, Journal of Sports Sciences, 32(7), 680-689. https://doi.org/10.1080/02640414.2013.850594
    Taylor, J. L., Holland, D. J., Spathis, J. G., Beetham, K. S., Wisløff, U., Keating, S. E., & Coombes, J. S. (2019). Guidelines for the delivery and monitoring of high intensity interval training in clinical populations. Progress in Cardiovascular Diseases, 62(2), 140–146. https://doi.org/10.1016/j.pcad.2019.01.004
    Tschakert, G., Kroepfl, J., Mueller, A., Moser, O., Groeschl, W., & Hofmann, P. (2015). How to regulate the acute physiological response to "aerobic" high-intensity interval exercise. Journal of Sports Science and Medicine, 14(1), 29-36.
    Viana, R. B., Naves, J., de Lira, C., Coswig, V. S., Del Vecchio, F. B., Vieira, C. A., & Gentil, P. (2018). Defining the number of bouts and oxygen uptake during the "Tabata protocol" performed at different intensities. Physiology and Behavior, 189, 10-15. https://doi.org/10.1016/j.physbeh.2018.02.045
    Wang, X., & Nicklas, B. J. (2011). Acute impact of moderate-intensity and vigorous-intensity exercise bouts on daily physical activity energy expenditure in postmenopausal women. Journal of obesity, 2011, 342431. https://doi.org/10.1155/2011/342431
    Warr-di Piero, D., Valverde-Esteve, T., Redondo-Castán, J. C., Pablos-Abella, C., & Sánchez-Alarcos Díaz-Pintado, J. V. (2018). Effects of work-interval duration and sport specificity on blood lactate concentration, heart rate and perceptual responses during high intensity interval training. PloS One, 13(7), e0200690. https://doi.org/10.1371/journal.pone.0200690
    Wen, D., Utesch, T., Wu, J., Robertson, S., Liu, J., Hu, G., & Chen, H. (2019). Effects of different protocols of high intensity interval training for VO2max improvements in adults: A meta-analysis of randomised controlled trials. Journal of Science and Medicine in Sport, 22(8), 941-947. https://doi.org/10.1016/j.jsams.2019.01.013
    Zagatto, A., Redkva, P., Loures, J., Kalva Filho, C., Franco, V., Kaminagakura, E., & Papoti, M. (2011). Anaerobic contribution during maximal anaerobic running test: Correlation with maximal accumulated oxygen deficit. Scandinavian Journal of Medicine and Science in Sports, 21(6), e222-e230. https://doi.org/10.1111/j.1600-0838.2010.01258.x

    下載圖示
    QR CODE