簡易檢索 / 詳目顯示

研究生: 吳淑美
Su-Mei Wu
論文名稱: 吳郭魚仔稚魚金屬硫蛋白的表現與其生理角色
Expression and function of metallothionein in developing larvae of tilapia (Oreochromis mossambicus)
指導教授: 黃基礎
Hwang, Ji-Chuu
黃鵬鵬
Hwang, Pung-Pung
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 94
中文關鍵詞: 吳郭魚仔稚魚金屬硫蛋白
英文關鍵詞: tilapia, larvae, metallothionein
論文種類: 學術論文
相關次數: 點閱:177下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本論文以吳郭魚仔魚(Oreochromis mossambicus)為材料,探討金屬硫蛋白(MT)之生理功能。首先進行MT純化以暸解其生化特性並建立定量方法,以探討MT在仔魚發育與重金屬解毒機制的角色。重要結果如下:
    (1)、純化吳郭魚之MT,其分離係數是 2.07,因此推論MT在吳郭魚體內是以聚元體方式存在,而且因為需應用較高濃度之Tris-HCl與Acetonitrile,才能將MT分離出陰離子管柱與高壓液相層析管柱,因此推論吳郭魚之MT是一個極性高的蛋白質。
    (2)、利用合成之多月太類(peptide)製作抗體,確立抗體之專一性,並且應用酵素免疫連結反應來定量MT蛋白質。
    (3)、仔魚自孵化後到發育第七天,其MT之表現呈現戲劇化的變化,剛孵化(H0)及第一天(H1)顯著的高於其他時間,此結果與發育階段鋅及銅的含量變化趨勢相近,因此推論發育中之MT可能與鋅及銅之調節有關。
    (4)、將H0與H3之仔魚以35 μg/L鎘處理24小時,H0顯著誘導MT,但H3則無誘導效果,比較H0和H3之鈣含量變化,結果經鎘處理後的H0仔魚,其鈣含量無顯著變化,而H3則顯著下降,因此推論H3仔魚之 MT的表現受到抑制是因為其生理狀況已不正常之緣故。
    (5)、進一步以膠體管柱層析分析比較,H0 之蛋白質與鎘含量分布高峰一致,而H3之蛋白質與鎘含量分布高峰則不一致,顯示H3蛋白質與鎘之結合已有不正常之現象。
    (6)、重金屬鎘、銅和鋅可誘導吳郭魚仔魚MT表現,而且呈現劑量與時間序列之效應。
    (7)、剛孵化仔魚利用低劑量之鋅、鎘及銅前處理再轉移到高鎘,可顯著的增加仔魚的存活力。本論文從MT,Cd2+,Ca2+,Na+含量變化去比較,發現其原因是因為低劑量重金屬前處理可以誘導MT的產生;增加陽離子吸收或減少鎘累積之緣故。
    綜合以上之結果,本論文認為吳郭魚仔魚MT之生理功能可能是參與發育過程鋅及銅離子之調節,以及與重金屬之解毒作用有關。

    Abstract
    The purpose of the present thesis was to study the physiological functions of metallothionein (MT) in developing larvae of tilapia (Oreochromis mossambicus). Firstly, MT was purified and characterized, and the quantitative method for MT was also established. The roles of MT in larval devlopment and metal detoxification were studied. The results were surrmanized as follows:
    (1) Purification and characterization revealed that tilapia MT, presented as a polymer protein, and is more electronegative than the MTs from other animals.
    (2) Synthetic peptides were designed to raise an antibody specifically against tilapia MT, and an ELISA system using the antibody was established to measure the MT contents in tilapia and some other species.
    (3) MT contents appeared a dramatic change in development of tilapia. Amount of whole-body MT in tilapia larvae increased to a peak at 1 d after hatching (H1), decreased rapidly thereafter. The change pattern in MT amount was similar to that in Zn and Cu contents during larval development, suggesting that MT is associated with the Zn and Cu regulation in developing larvae.
    (4) H0 larvae, which were treated with 35 μg /L Cd2+ for 24 h, showed significant increases in the MT amount (1.7-fold) and accumulated Cd2+ (6.5-fold), but no significant change in Ca2+ content. The H3 larvae with the same treatment revealed about a 10-fold increase in the accumulated Cd2+, and a 10% decrease in Ca2+ content, but no any change in MT. 35 μg /L Cd2+ caused to experience hypocalcemia, an abnormal physiological condition, in which H3 larvae could not synthesize sufficient MT and thus showed greater mortality.
    (5) Results of gel filtration chromatography showed that peaks of protein and Cd were concurrent in H0 while those in H3 were inconsistent, suggestion the occurrence of abnormal binding of Cd to the protein in H3.
    (6) Waterborne Cd, Cu and Zn could induce MT in new-hatched larvae with dose-dependent and time-dependent patterns.
    (7) Pretreatment with low-dose Cu, Zn and Cu were found to enhance the survival of larvae upon the subsequent exposure to a high-dose Cd. Stimulation of MT and/or activation of ionic uptake may achieve this enhancement.
    Based on the above results, We concluded that MT might play some roles in the development and metal-detoxification of tilapia larvae.

    目 錄 中文摘要-----------------------------------------------------------------------------01 英文摘要-----------------------------------------------------------------------------03 第一章 引言-------------------------------------------------------------------------05 一、金屬硫蛋白(Metallothionein, MT)的一般特性-----------------------06 二、MT與發育之關係 -----------------------------------------------------------08 三、重金屬間的影響與MT之關係---------------------------------------------09 四、環境重金屬與MT之關係 -------------------------------------------------10 五、MT之定量方法 --------------------------------------------------------------11 六、研究目的------------------------------------------------------------------------12 第二章 吳郭魚肝組織之鎘MT的純化----------------------------------------13 一、前言------------------------------------------------------------------------------13 二、材料與方法---------------------------------------------------------------------13 三、結果------------------------------------------------------------------------------16 四、討論------------------------------------------------------------------------------17 第三章 吳郭魚MT抗體與MT定量方法之建立----------------------------20 一、前言------------------------------------------------------------------------------20 二、材料與方法----------------------------------------------------------------------20 三、結果-----------------------------------------------------------------------------22 四、討論-----------------------------------------------------------------------------23 第四章 MT在仔魚發育過程之角色-------------------------------------------26 一、前言-----------------------------------------------------------------------------26 二、材料與方法--------------------------------------------------------------------27 三、結果-----------------------------------------------------------------------------28 四、討論-----------------------------------------------------------------------------29 第五章 仔稚魚之MT與重金屬解毒作用之關係---------------------------32 一、前言-----------------------------------------------------------------------------32 二、材料與方法--------------------------------------------------------------------32 三、結果-----------------------------------------------------------------------------34 四、討論-----------------------------------------------------------------------------35 第六章 低濃度之鋅、鎘、銅前處理與鎘忍受力之關係 -----------------39 一、前言-----------------------------------------------------------------------------39 二、材料與方法--------------------------------------------------------------------41 三、結果-----------------------------------------------------------------------------42 四、討論-----------------------------------------------------------------------------44 第七章 總結與未來展望 --------------------------------------------------------49 參考文獻-----------------------------------------------------------------------------51 表--------------------------------------------------------------------------------------65 圖--------------------------------------------------------------------------------------81

    參考文獻
    余明俊。1995。 “吳郭魚仔魚鎘致毒之可能機制” 碩士論文, 台灣大學,台北。Pp 61。
    吳淑美。2000。短期鎘處理對吳郭魚Oreochromis mossambicus仔魚之發育與鹽類細胞形態之影響。生物科學 43:27-34。
    許世昌。1998。“母方效應對增進吳郭魚仔魚鎘耐受性可能之影響” 碩士論文,東海大學,台中。Pp 41。
    Andrews GK., Hueat-Hudson YM., Paria BC., Mcmaster MT. and Dey SK. 1991. Metallothionein gene expression and metal regulation during preimplantation mouse embryo development (MT mRNA during early development). Develop. Biol. 145: 13-27.
    Angerer LM., Kawczynski G., Wilkinson DG., Nemer M. and Angerer RC. 1986. Spatial pattern of metallothionein mRNA expression in the sea urchin embryo. Develop. Biol. 145: 13-27.
    Beattie JH. and Pascoe D. 1978. Cadmium uptake by rainbow trout, Salmo gairdneri eggs and alevins. J. Fish Biol. 13: 631-637.
    Bernardo J. 1996. Maternal effects in animal ecology. Amer. Zool. 36: 83-105.
    Blain D., Kubow S. and Chan HM. 1998. Zinc pretreatment inhibits isotretinoin teratogenicity and unduces embryonic metallothionein in CD-1 mice. J. Nutri. 128: 1239-1246.
    Bonham K., Zafarullah M. and Gedamu L. 1987. The rainbow trout metallothioneins: molecular cloning and characterization of two distinct cDNA sequences. DNA 6: 519-528.
    Brouwer M. and Holxum-Browwer T. 1998. Biochemical defense mechanisms against copper-induced oxidative damage in the blue crab Callinectes sapidus. Arch. Biochem. Biophysiol. 351: 257-264.
    Brouwer M. and Holxum-Browwer T. 1992. Glutathione- mediated transfer of copper (I) into American lobster apohemocyanin. Biochem. 31: 4096-4102.
    Brouwer M. Schlenk D., Ringwood AM, and Holxum-Browwer T. 1992. Metal-specific induction of metallothionein isoforms in the blue crab Callinectes sapidus in response to single- and mixed-metal exposure. Arch. Biochem. Biophysiol. 294: 461-468.
    Brouwer M. and Holxum-Browwer T. 1991. Interaction of copper- metallothionein from the American lobster, Homarus americanus, with glutathione. Arch. Biochem. Biophysiol. 290: 207-213.
    Cai L. and Cherian MG. 1996. Adaptive response to ionizing radiation-induced chromosome aberrations in rabbit lymphocytes: effect of pre-exposure to zinc, and copper salts. Mutat. Res. 369: 233-241.
    Cattani O., Serra R., and Isani G. 1996. Correlation between metallothionein and energy metabolism in sea bass Dicentrarchus labrax. exposed to cadmium. Comp. Biochem. Physiol. 113C: 193-199.
    Chan KM. 1994. PCR-cloning of goldfish and tilapia metallothionein complementary DNAs. Biochem. Biophysiol. Res. Comm. 205: 368-374.
    Chang MH., Lin HC. and Hwang PP. 1998. Ca2+ uptake and Cd2+ accumulation in larval tilapia (Oreochromis mossambicus) acclimated to waterborne Cd2+. Amer. J. Physiol. 274: R631-639.
    Chang MH., Lin HC., and Hwang PP. 1997. Effects of cadmium on the kinetics of calcium uptake in developing tilapia larvae, Oreochromis mossambicus. Fish Physiol. Biochem. 16: 459-470.
    Chatterjee A. and Maiti IB. 1987. Purification and immunological characterization of catfish Heteropneustes fossilis metallothionein. Mol. Cell Biochem. 78: 55-64.
    Chen CF., Wang SH. and Lin LY. 1996. Identification and characterization of metallothionein III (Growth Inhibitory Factor) from porcine brain. Comp. Biochem. Physiol. 115B: 27-32.
    Churchich JE., Scholz G. and Kwok F. 1989. Activation of pyridoxal kinase by metallothionein. Biochem. Biophysiol. Acta. 996: 181-186.
    Craig A, Hare L. and Tessier A. 1999. Experimental evidence for cadmium uptake via calcium channels in the aquatic insect Chironomus staegeri. Aqua. Toxicol. 44: 255-262.
    Dey SK., Paria BC. and Andrews GK. 1993. Stage-specific effects of cadmium on preimplantation embryo development and implantation in the mouse. Toxicol. 80: 13-25.
    De Jesus EG., Hirano T. and Inui Y. 1991. Changes in cortisol and thyroid hormone concentrations during early development and metamorphosis in the Japanese flounder, Paralichthys olivaceus. Gen. Comp. Endocrinol. 82: 369-376.
    Dethloff GM., Schlenk D., Hamm JT. and Bailey HC. 1999. Alterations in physiological parameters of rainbow trout (Oncorhynchus mykiss ) with exposure to copper and copper/zinc mixtures. Ecotox.. Environ. Saf. 42: 253-264.
    Dunn MA., Blalock JL. and Cousins RJ. 1987. Metallothionein. Pro. Soc. Exp. Biol. Med. 185: 107-119.
    Duquesne S., Janquin MA. and Hogstrand C. 1995. Quantification of fish hepatic metallothioneins, naturally or artifically induced, by ELISA: a comparason with radioimmunoassay and differential pulse polarography, Fresenius' J. Anal. Chem. 352: 589-595.
    Ellman GL. 1959. The sulphydryl groups. Arch Biochem. Biophysiol. 82: 70-77.
    Engel DW. 1987a. Metal regulation and molting in the blue clab Callinectes sapidus: metallothionein function in metal metabolism. Biol. Bull. 173: 239-251.
    Engel DW. 1987b. Metal regulation and molting in the blue crab Callinectes sapidus: copper, zinc, and metallothionein. Biol. Bull. 172: 69-82.
    Engel DW. and Brouwer M. 1991. Short-term metallothion and copper changes in blue crabs at ecdysis. Biol. Bull. 180: 447-452.
    Fowler BA., Hildebrand CE., Kojima Y. and Webb M. 1987. Nomenclature of metallothionein. In: Metallothionein II, edited by J.H.R.Kagi and Y. Kojima. Birkhauser-Verlag, Basel, pp. 19-22.
    Fu H., Steinebach OM., Van den Hamer CJA, Balm PHM. and Lock RAC. 1990. Involvement of cortisol and metallothionein-like proteins in the physiological responses of tilapia (Oreochromis mossambicus) to sublethal cadmium stress Aqua. Toxicol. 16: 257-270.
    Fu H. and Lock RCA. 1990. Pituitary response to cadmium during the early development of Tilapia (Oreochromis mossambicus). Aqua. Toxicol. 16: 9-18.
    Gagne F and Blaise C. 1991. Sublethal toxicity of pulp mill effuents evulated by the measurement of metallothionein and mixed function oxidase induction in the liver of rainbow trout. Can. Tech. Rep. Fish Aqua. Sci. 1774: 973-944.
    George SG., Todd K. and Wright J. 1996. Regulation of metallothionein in teleosts: induction of MTmRNA and protein by cadmium in hepatic and extrahepatic tissues of a marine flatfish, the turbot (Scophthalmus maximus). Comp. Biochem. Physiol. 113C: 109-115.
    George S., Leaver M., Frerichs N. and Burgess D. 1990. Fish metallothionein: molecular cloning studies and induction in culture cells. Mar. Environ. Res. 28: 173-177.
    George SG. 1989. Cadmium effects on plaice liver xenobiotic and metal detoxification systems dose-response. Aqua. Toxicol. 15: 303-310.
    Giles MA. 1984. Electrolyte and water balance in plasma and urine of rainbow trout (Salmo gairdneri) during chronic exposure to cadmium. Can. J. Aquat. Soc. 41: 1678-1685.
    Giles MA. 1988. Accumulation of cadmium by rainbow trout, Salmo gairdneri, during extended exposure. Can. J. Fish. Aquat. Sci. 45: 1045-1053.
    Goyer RA. 1997. Toxic and essential metal interactions. Annu. Rev. Nutr. 17: 37-50.
    Hamer DH. 1986. Metallothionein. Annu. Rev. Biochem. 55: 913-951.
    Hamilton SJ. and Mehrle PM. 1986. Metallothionein in fish: review of its importance in assessing stress from metal contaminants. Trans. Am. Fish. Soc. 115: 596-609.
    Hamza-Chaffai A., Amiard-Triquet C and Abed AH. 1997. Metallothionein-like protein: is it an effecient biomarker of metal contamination? A case study based on fish from the tunisian coast. Arch Environ. Contam. Toxicol. 33: 53-62.
    Heath AG. 1987. Water and pollution and fish physiology. CRC press, Inc., Boca Raton, pp. 245.
    Hidalgo J., Bernuces J., Thomas DG. and Garvey JS. 1988. Effect of 2-mercaptoethanol on the electrophoretic behavior of rat and dogfish metallothionein and chromatgraphic evidence of a naturally occurring metallothionein polymerization. Comp. Biochem. Physiol. 89C: 191-196.
    Hinck-Kneip C. and Alsen-Hinrichs C. 1996. Influences of gold on zinc, copper and metallothionein kinetics in liver and kidney of the rat. Human Experi. Toxicol. 15: 518-522.
    Hogstrand C., Wilson RW., Polgar D. and Wood CM. 1994. Effects of zinc on the kinetics of branchial calcium uptake in freshwater rainbow trout during adaptation to waterborne zinc. J. Exp. Biol. 186: 55-73.
    Hogstrand C and Haux C. 1992. Evaluation of differential pulse polarography for the quantification of metallothionein- a comparison with RIA, Anal. Biochem. 200: 388-392.
    Hogstrand C, Lithner G. and Haux C. 1991. The importance of metallothionein for the accumulation of copper, zinc and cadmium in environmentally exposed perch, Perca fluviatilis. Pharm. Toxico. 68: 492-501.
    Hwang PP., Wu SM., Klin JH. and Wu LS. 1992. Cortisol content of eggs and lrvae of teleosts. Gen. Comp. Endocrinol. 86: 189-196.
    Hwang PP., Lin SW. and Lin HC. 1995. Different sensitivities to cadmium in tilapia larvae(Oreochromis mossambicus; Teleostei). Arch Environ. Contam. Toxicol. 29: 1-7.
    Hwang PP., Tung YC. and Chang MH. 1996. Effect of environmental calcium uptake in tilapia larvae (Oreochromis mossambicus). Fish Physiol. Biochem. 15: 363-370.
    Hwang PP. and Yang CH. 1997. Modulation of calcium uptake in cadmium-pretreated tilapia (Oreochromis mossambicus) larvae. Fish Physiol. Biochem. 16: 403-410.
    Hyland K., Haux C. and Hogstrand C. 1995. Immunological characterization of metallothionein in marine and fresh fish, Mar. Environ. Resh. 39: 111-115.
    Hyllner S J., Andersson T., Haux C. and Olsson PE. 1989. Cortisol induction of metallothionein in primary culture of rainbow trout hepatocytes. J. Cell Physiol. 139: 24-28.
    Kammann U., Friedrich M. and Steinhart H. 1996. Isolation of a metal-binding protein from ovaries of dab Limanda limanda L. distinct from metallothionein: effect of cadmium exposure. Ectoxicol. Environ. Safe. 33: 281-286.
    Kille P., Stephens PE. and Kay J. 1991. Elucidation of cDNA sequences for metallothioneins from rainbow trout, stone loach and pike liver using the polymerase chain reaction. Biochem. Biophysiol. Acta 1089: 407-410.
    Kito H., Ose Y., Sato T., Ishikaua T. and Tazawa T. 1982. Separation and purification of (Cd, Cu, Zn) metallothionein in carp hepato-pancreas. Comp. Biochem. Physiol. 73C: 121-127.
    Kuroshima R. and Kimura S. 1990. Changes in toxicity of Cd and its accumulation in girella and goby with their growth. Nippon Suisan. Gakkaishi. 56: 431-435.
    Lau JC. and Cherian GM. 1998. Developmental changes in hepatic metallothionein, zinc, and copper levels in genetically altered mice. Biochem. Cell Biol. 76: 615-623.
    Lee DK., Fu K., Liang L., Dalton T., Palmiter RD. and Andrews GK. 1996. Transgenic mouse blastocysts that overexpress metallothionein-I resist cadmium toxicity in vitro. Mol. Rep. Dev. 43: 158-166.
    Li J., Quabius ES., Wendelaar Bonga SE., Flik G. and Lock RAC. 1998. Effect of water-borne copper on branchial chloride cells and Na+/K+-ATPase activities in Mozambique tilapia(Orecchromis mossambicus) Aqua. Toxicol. 43: 1-11.
    Liebrich W., Brown AC. and Botes DP. 1995. Cadmium-binding proteins from a tunicate, Pyura stolonifera. Comp. Biochem. Physiol. 112C: 35-42.
    Liu J., Liu Y., Michalska AE., Choo KH. and Klaassen CD. 1996. Metallothionein plays less of a protective role in cadmium-metallothionein-induced nephrotoxicity than in cadmium chloride-induced hepatotoxicity. J. Pharm. Exo.Ther. 276: 1216-1223.
    Mackay E., Overnell J., Dunbar B., Davidson I., Huniziker PE., Kagi HR. and Fothergill JE. 1993. Complete amino acid sequence of five dimeric and four monomeric forms of metallothionein from the edible mussel Mytilus edulis. Eur. J. Biochem. 218: 183-194.
    Mance G. 1987. Pollution threat of heavy metals in aquatic environments. Elsev. Appl. Sci. New York, Pp. 372.
    Margoshes M. and Vallee BL. 1957. A cadmium protein for equine kidney cortex, J. Amer. Chem. Soc. 79: 4813-4814.
    Mishima A., Yamamoto C., Fujiwara Y. and Kaji T. 1997. Tolerance to cadmium cytotoxicity is induced by zinc through non-metallothionein mechanisms as well as metallothionein induction in cultured cells. Toxicol. 118: 85-92.
    Moffatt P. and Denizeau F. 1997. Metallothionein in physiological and physiopathological processes. Drug Metab. Rev. 29: 261-307.
    Neff J M. 1985. Use of biochemical measurements to detect pollutant mediated damage to fish. Aquatic. Toxicol. Hazard. Assess. Seventh Symposium, ASTM STP 854, eds by Cardwell RD., Purdy and RC. Bahner. ASTM. Philadelphia, Pp. 155-183.
    Nemer M., Trvaglini EC., Rondinelli E. and D'Alonzo J. 1984. Developmental regulation, induction, and embryonic tissue specificity of sea urchin metallothionein genes expression. Develop. Biol. 102: 471-482.
    Norey CG., Cryer A. and Kay J. 1990a. induction of metallothionein gene expression by cadmium and the retention of the toxic metal in the tissues of rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. 97C: 215-220.
    Norey CG., Cryer A. and Kay J. 1990b. A comparison of cadmium-induced metallothionein gene expression and Me2+ distribution in the tissues of cadmium sensitive (rainbow trout; Salmo gairdneri) and tolerant (stone loach; Noemacheilus barbatulus) species of freshwater fish. Comp. Biochem. Physiol. 97C: 221-225.
    Olsson PE. and Kille P. 1997. Functional comparison of the metal-regulated transcriptional control regions of metallothionein genes from cadmium-sensitive and tolerant fish species. Biochem. Biophysiol. Acta 1350: 325-334.
    Olsson PE., Kling P., Petterson C. and Silversand C. 1995. Interaction of cadmium andoestradiol-17 on metallothionein and vitellogenin synthesis in rainbow trout (Oncorhynchus mykiss). Biochem. J. 307: 197-303.
    Olsson PE., Zafarullah M., Foster R., Hamor T. and Gedamu L. 1990. Developmental regulation of metallothionein mRNA, zinc and copper levels in rainbow trout (Salmo gairdnei). Comp. Biochem. Physiol. 97C: 215-220.
    Olsson PE., Zafarullah M. and Gedamu L. 1989. A role of metallothionein in zinc regulation after oestradiol induction of vitellogenin synthesis in rainbow trout, Salmo gairdneri. Biochem. 257: 555-559.
    Olsson PE. and Haux C. 1986. Increased hepatic metallothionein content correlates to cadmium accumulation in environmentally exposed perch (Perca fluviatilis). Aqua. Toxicol. 9: 231-242.
    Overnell J. and Coombs TL. 1979. Purification and properties of plaice metallothionein a cadmium-binding protein from the liver of the plaice Pleuronecctes platessa. Biochem. J. 183: 277-283.
    Pedersen SN., Pedersen KL., Hojrup P., Knudsen J. and Depledge MH. 1998. Induction and identification of cadmium-, zinc- and copper- metallothioneins in the shore crab Carcinus maenas (L.). Comp. Biochem. Physiol. 120C: 251-259.
    Pratap HB. Fu H., Lock RCA.and Wendelaar Bonga SE. 1989. Effects of Waterborne and dietary cadmium on plasm ions of the teleost Oreochromis mossambicus in relation to water calcium levels. Arch Environ. Contam. Toxicol. 18: 568-575.
    Reddy NG. and Prasad MNV. 1992. Cadmium induced potassium efflux from Scenedesmus quaricauda. Bull. Environ. Contam. Toxicol. 49: 600-605.
    Richards MP. 1989. Characterization of the metal composition of metallothionein isoforms using reversed-phase high-performance liquid chromatography with atomic absorption spectrophotometric detection. J. Chrom. 482: 87-97.
    Richards MP. and Steele NC. 1987. Isolation and quantitation of metallothionein isoforms using reversed-phase High-Performance liquid chromato graphy. J. Chrom. 402: 243-256.
    Ringwood AH. and Brouwer M. 1993. Expression of constitutive and metal-induceible metallothionein in oyster embryos (Crassostrea virginica). Comp. Biochem. Physiol. 106B: 523-529.
    Rocha HA., Bannister WH. and Bannister JV. 1984. The amino-acid sequence of copper/zinc superoxide dismutase from swordfish liver comparison of copper/zinc superoxide dismutase sequences. Eur. J. Biochem. 145: 477-484.
    Robbins AH. and Stout CD. 1991. "X-ray structure of metallothionein" in Methods in enzymology. eds by Riordan J. F. and Vallee, B. L. Academic press, San Didgo, California. pp. 485-502.
    Robert JC. 1991. "Measurement of human metallothionein by enzyme-linked immunosorbent assay" in Methods in enzymology. eds by Riordan J. F. and Vallee, B. L. Academic press, San Didgo, California. pp. 131-141.
    Roesijadi G. 1992. Metallothioneins in metal regulation and toxicity in aquatic animals. Aqua. Toxicol. 22: 81-114.
    Roesijadi G. and Fowler B. 1992. Purfication of invertebrate metallothioneins. In: Methods in Enzymology vol. 205, Metallothionein,part B; Metallothionein and related molecules, edited by J..F. Riodan and B. L. Vallee. Academic Press, San Diego. pp. 263.
    Roesijadi G., Hansen KM. and Unger ME. 1996. Cadmium-induced metallothionein expression during embryonic and early larval development of the mollusc Crassostrea virginica Toxicol. Appl. Pharm. 140: 356-363.
    Rombough PJ. and Garside ET. 1982. Cadmium toxicity and accumulation in eggs and alevins of Atlantic salmon Salmo salar. Can. J. Zool. 60: 2006-2014.
    Rombough PJ and Garside ET. 1983. Disturbed ion balance in alevins of Atlantic salmon Salmo salar chronically exposed to sublethal concentrations of cadmium. Can. J. Zool. 62: 1443-1450.
    Saito S. and Yoshida K. 1998. The effect of gold on zinc in liver and in metallothionein. Res. Commun. Mol. Pathol. Pharmacol. 100: 83-91.
    Saito S. and Kojima Y. 1997. Differential role of metallothionein on Zn, Cd and Cu accumulation in hepatic cytosol of rats. Cell Mol. Life Sci. 53: 267-270.
    Saito S. 1996a. The effect of copper on zinc in liver and in metallothionein. Res. Commun. Mol. Pathol. Pharmacol. 94: 259-264.
    Saito S. 1996b. The effect of cadmium on zinc and copper contents in liver and in metallothionein. Res. Commun. Mol. Pathol. Pharmacol. 94: 265-270.
    Sato M. and Bremner I. 1993. Oxygen free radicals and metallothionein. Free Radical Biol. Med. 14: 325-337.
    Schlenk D. and Brouwer M. 1991. Isolation of three copper metallothionein isoforms from the blue crab (Callinectes sapidus). Aqua. Toxicol. 20: 25-34.
    Schlenk D. and Brouwer M. 1993. Induction of metallothionein mRNA in the blue crab (Callinectes sapidus) after treatment with cadmium. Comp. Biochem. Physiol. 194C: 317-321.
    Schlenk D. Wolford L., Chelius M., Steevens J. and Chan KM. 1997. Effect of arsenite, arsenate, and the herbicide monmsodium methyl arsonate (MSMA) on hepatic metallothionein expression and lipid peroxidation in channel catfish. Comp. Biochem. Physiol. 118C: 177-183.
    Shimada H., Hochadel JF. and Waalkes MP. 1997. Progesterone pretreatment enhances cellular sensitivity to cadmium dospite a marked activation of the metallothionein gene. Toxicol. Appl. Pharm. 142: 178-185.
    Takeda H, and Shimizu C. 1982. Purification of metallothionein from the liver of skipjack and its properties. Bull. Jap. Soc. Sci. Fish 48: 717-723.
    Templeton DM. and Chenan MG. 1984 Chemical modifications of metallothionein, preparation and characterization of polymers. Biochem. J. 221: 569-575.
    Tohyama C., Suzuki JS., Homma S., Karasawa M., Kuroki T., Nishimura H. and Nishimura N. 1996. Testosterone dependent induction of metallothionein in genital organs of male rats. Biochem. J. 317: 97-102.
    Ueng YF., Liu C., Lai CF., Meng LM., Hung YY. and Ueng TH. 1996. Effects of cadmium and environmental pollution on metallothionein and cytochrome P450 in tilapia. Bull. Environ. Contam. Toxicol. 57: 125-131.
    Unger ME., Chen, CC., Fenselau CM., Murphy CM., Vestling MM. and Roesijadi G. 1991. Primary structure of a molluscan metallothionein deduced from molecular cloning and tandem mass spectrometery. Biochem. Biophysiol. Acta 1074: 371-377.
    Vallee BL. and Falchuk KH. 1993. The biochemical Basis of zinc physiology. Physiol. Rev. 73: 79-118.
    Verbost PM., Van-Rooij J., Flik G., Lock RAC. and Wendelaar- Bonga SE. 1989. The movement of cadmium through freshwater trout branchial epithelium and its interference with calcium transport. J. Exp. Biol. 145: 185-197.
    Weis JS. and Weis P. 1977. Effects of heavy metals on development of the killfish, Fundulus heterociltus. J. Fish Biol. 11: 49-54.
    Westernhagen H. and Dethlefsen V. 1975. Combined effects of cadmium and salinity on development and survival of flounder eggs. J. Mar. Biol. Ass. U. K. 55: 945-957.
    Westernhagen HV. 1988 . Sublethal effects of pollutants on fish eggs and larvae. In: Fish Physiology. Vol. XI. The physiology of Developing Fish. Part A. Eggs and larvae. Edit by Hoar, W. S. and Randall, D. Academic Press, San Diego, pp. 253-346.
    Wilkison DG. and Nemer M. 1987. Metallothionein genes MTa and MTb expressed under distinct quantitative and tissue-specific regulation in sea urchin embryo. Mol. Cell Biol. 7:48-58.
    Winge DR., Krasno J. and Colucci AV. 1974. Cadmium accumulation in rat liver: correlation between bound metal and pathology, in Hoekstra. Edit by Suttie WJW., Ganther HE., and Mertz W. Trace element metabolism in animals 2: University Park Press, Baltimore. 500-502.
    Wlostowski T. 1992. On metallothionein, cadmium, copper and zinc relationships in the liver and kidney of adult rats. Comp. Biochem. Physiol. 103C: 35-41.
    Woo PTK, Sin YM. and Wong MK. 1993. The effect of short-term acute cadmium exposure on blue tilapia, Oreochromis aureus. Environ. Biol. Fishes 37: 67-74.
    Wright DA., Meteyer MJ. and Martin FD. 1985. Effect of calcium on cadmium uptake and toxicity in larvae and juveniles of striped bass (Morone saxatilis). Bull. Environ. Contam. Toxicol. 34: 196-204.
    Wu SM., Weng CF., Hwang JC., Hwang CH., Hwang PP. 2000. Metallothionein induction in early larval of tilapia Oreochromis mossambicus Physiol. Biochem. Zool. 73: 531-537.
    Wu SM., Weng CF., Yu MJ., Lin CC., Chen ST., Hwang JC. and Hwang PP. 1999. Cadmium-inducible metallothionein in tilapia (Oreochromis mossambicus). Bull. Environ. Contam. Toxicol. 62: 758-768.

    QR CODE