簡易檢索 / 詳目顯示

研究生: 黃立文
Huang, Li-Wen
論文名稱: 高頻等脈衝微放電電源開發應用於含硼聚晶鑽石陣列微結構線切割放電研究
Development of a micro-EDM power source of high-frequency with iso-pulse for the research of wire-cutting microstructure array made of boron-doped polycrystalline composite diamond
指導教授: 陳順同
Chen, Shun-Tong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 215
中文關鍵詞: 高頻等脈衝微放電電源電磁式線張力控制技術放電短路時間比開放式切割
英文關鍵詞: high-frequency iso-pulse micro-EDM power source, electromagnetic microwire tension control technique, Discharge Short Circuit Rate, opened-pathway cutting
DOI URL: http://doi.org/10.6345/NTNU201900029
論文種類: 學術論文
相關次數: 點閱:170下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在開發一種高效能「高頻等脈衝微放電電源」,並應用於含硼聚晶鑽石高深寬比微細結構陣列的精微線切割放電加工研究。透由「元件可程式邏輯閘陣列(FPGA)」精準控制雙極放電迴路中的電容充放電週期,以創造出高頻、高峰值及短脈衝的電流波列;研究並提出以「電磁式」控制超微細線極張力的技術及設計「微細線極放電切割機構」。電磁式線張力控制技術係非接觸式作用,無摩擦與磨耗,僅微調電流,便能精密且平穩地控制微細線極的張力及川流速度,線極偏擺量可抑制在0.2 μm內(線張力10 gf)。研究以線徑ψ13μm鎢線對含硼聚晶鑽石進行切割加工實驗,並對不同工作電容下所生成的單位時間電荷量、放電短路時間比、火花熔蝕能力及材料移除率等影響因素作評估。實驗證實,結合「高頻等脈衝微放電電源」及「電磁式線張力控制技術」,能成功實現包括平板、梯形板及梯形柱等微結構陣列的切割,深寬比達1:22。因放電電源所創造出的每發能量波形,均具等脈衝及等間距特性,故放電波列能高速、微量且定量地移除材料,即使面對高阻抗、高硬度及高熔點的含硼聚晶鑽石,也能加工出具高一致性且高深寬比的鑽石微細結構陣列。為提升鑽石微結構的切割效能,實驗也提出「多線式切割」及「開放式切割」兩方法,前者包含對放電短路時間比與放電短路機率作可行性評估。結果顯示聚晶鑽石因阻抗大,短路比高,顯示多線極切割效能並未能優於單線極;而後者實驗結果發現,相較於封閉式切割,開放式切割具較佳的切割品質及較高的切割效能。實驗也對聚晶鑽石微結構的加工面粗糙度、形狀精度與石墨化變質層等影響因素,以及應用於電子元件散熱場合的可行性作探討。實驗結果顯示本研究開發的技術成果具商業化價值。

    This paper presents the development of a 'high-frequency iso-pulse micro-EDM power source' with high-performance for the study on microwire-cutting microstructure array made of Boron-doped Polycrystalline Composite Diamond (B-doped PCD). A FPGA (Field Programmable Gate Array)-controlled power source based on a Bipolar Resistance-Capacitance (Bi-RC) relaxation circuit that can create a current of high-frequency and high-peak with an iso-pulse train is proposed in this study. To eliminate friction and wear between the microwire and device, a small microwire-cutting mechanism in which the microwire tension is controlled by electromagnetic technique is designed. Swaying and wriggling of the microwire can be swiftly minimized within 0.2 μm through fine tuning the work current, ensuring the microwire tension and the running speed kept steady. Experiments of B-doped PCD cutting are conducted by a tungsten microwire of ϕ13 μm. An extensive examination of the quantitative and qualitative properties comprising the Electric Charges per unit Volume (ECV) under different work capacitance, Discharge Short Circuit Rate (DSCR), Spark Erosion Ability (SEA), and Material Removal Rate (MRR) has been undertaken. Experimental results demonstrate that by combining the developed 'high-frequency iso-pulse micro-EDM power source' with the 'electromagnetic microwire tension control' techniques can successfully machine the plate-shaped, trapezoidal plate-shaped, and trapezoidal pillar-shaped diamond microstructures array. The aspect-ratio of microstructures array is up to 1:22. The discharge current of high-frequency and high-peak with an iso-pulse train generating a high-temperature spark erosion energy facilitates diamond material removed by high-speed, quantitatively and minor, creating uniform and consistent microstructures array. To enhance machining efficiency during diamond microstructures cutting, the two 'multi-wire cutting' and 'opened-pathway cutting' approaches are also suggested. Experimental results show that the multi-wire cutting is not superior in DSCR compared with that of single-wire cutting because of a high electrical resistivity of B-doped PCD. In terms of the pathway, the resultant quality and performance of cutting are better in the case of opened-pathway cutting. The formed microstructures have also been evaluated with regard to the influential factors of surface roughness, geometrical accuracy and graphitized layer as well as the discussion of heat dissipation for semiconductor chips. This development is expected to contribute substantially to the commercial applications of precision micromanufacturing industries.

    中文摘要 I 誌謝 III 目錄 IV 表目錄 IX 圖目錄 XII 符號說明 XXII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧與專利回顧 4 1.2.1 放電加工之放電電源 4 1.2.2 精微線張力控制技術 8 1.2.3 鑽石放電加工及應用 13 1.2.4 常用的鑽石加工法 18 1.3 研究動機 21 1.4 研究目的 24 1.5 研究方法 26 第二章 實驗原理與應用 28 2.1 放電加工原理 28 2.2 精微放電加工原理 29 2.2.1 放電加工工作參數 29 2.2.2 放電加工常用電源 31 2.2.3 放電熱影響 33 2.3 含硼聚晶鑽石材料特性 35 2.3.1 含硼聚晶鑽石材料性質 35 2.3.2 含硼聚晶鑽石放電加工應用 36 2.4 高頻等脈衝微放電電源系統原理 38 2.4.1 放電電源週期訊號設計 40 2.4.2 電晶體切換開關控制電容充電原理 43 2.5 磁阻尼原理與應用 46 2.5.1 磁力原理 46 2.5.2 渦電流煞車原理(磁阻尼力) 48 第三章 實驗所需設備與儀器 52 3.1 硬體設備 52 3.1.1 CNC立式綜合加工機 52 3.1.2 CNC線切割放電加工機 53 3.1.3 超精密桌上微型工具機 54 3.1.4 桌上型微細線捲繞機 55 3.2 硬體設計 56 3.2.1 元件可程式邏輯閘陣列(FPGA) 56 3.2.2 高功率電源供應器 57 3.2.3 微型直流馬達 58 3.3 量測設備儀器 58 3.3.1 混合訊號示波器 58 3.3.2 工具顯微鏡 59 3.3.3 掃描式電子顯微鏡 60 3.3.4 3D雷射掃描式共軛焦顯微鏡 61 3.3.5 共焦拉曼光譜量測設備 61 3.4 實驗材料選用 62 3.4.1 微細銅線 62 3.4.2 超微細鎢線極 63 3.4.3 含硼聚晶鑽石 64 第四章 電磁式線張力控制技術建構 65 4.1 電磁式微細線張力控制器設計 65 4.1.1 電磁鐵磁力均佈機制 65 4.1.2 電磁鐵磁力分析與設計 68 4.1.3 電磁式微細線張力控制器設計(專利) 70 4.1.4 電磁式微細線張力控制器實現 75 4.2 電磁控制之微細線張力與機構溫度量測 77 4.2.1 輸出線張力量測 77 4.2.2 溫度上升測量 80 4.3 精微線切割之微細線極放電切割機構設計 81 4.4 精微線切割放電加工機構線川流測試 83 4.4.1 微溝槽線導桿設計 83 4.4.2 川流線極偏擺量實驗 84 4.4.3 多重線極川流實驗 86 4.4.4 線張力對槽寬影響 87 第五章 高頻等脈衝控制之微放電電源設計 90 5.1 高頻等脈衝微放電之電路設計 91 5.2 高頻等脈衝訊號控制設計 96 5.3 高頻等脈衝微放電參數控制介面設計 100 5.4 高頻等脈衝微放電頻率測試與分析 103 5.5 高頻等脈衝微放電線切割實驗建構 111 5.5.1 高頻等脈衝微放電線切割加工機實現 111 5.5.2 精微線切割放電加工實驗流程設計 115 5.6 高頻等脈衝微放電加工能力定義 116 5.7 含硼聚晶鑽石材料之各項放電參數測試 119 5.7.1 不同放電電容對含硼聚晶鑽石放電加工測試 119 5.7.2 不同放電頻率對含硼聚晶鑽石放電加工測試 125 5.7.3 不同進給率對含硼聚晶鑽石放電加工測試 135 5.8 多線式切割對於含硼聚晶鑽石之可行性測試 140 5.8.1 多線式切割對於含硼聚晶鑽石加工性推論與計算 140 5.8.2 多線式切割對於含硼聚晶鑽石加工性測試 146 第六章 含硼聚晶鑽石之精微結構加工驗證 151 6.1 高尺寸精度放電線切割路徑規劃 151 6.2 含硼聚晶鑽石微結構筆直度誤差與開放式切割法 154 6.2.1 微細線極之對刀重現性 154 6.2.2 含硼聚晶鑽石微溝槽筆直及表面粗糙度精加工驗證 158 6.2.3 開放式切割法加工含硼聚晶鑽石斜角結構 165 6.2.4 開放式切割之材料移除機制探討 168 6.3 高頻等脈衝微放電對含硼聚晶鑽石表面粗糙度影響 169 6.3.1 不同放電參數對含硼聚晶鑽石之加工表面粗糙度 169 6.3.2 高頻等脈衝微放電對於表面粗糙度的影響探討 174 6.4 放電熱對含硼聚晶鑽石微結構的影響 176 6.4.1 放電熱對微結構不同厚度的破壞影響 176 6.4.2 電荷含量對含硼聚晶鑽石石墨化的影響 181 6.5 含硼聚晶鑽石各式微結構加工成形 184 6.5.1 陣列平板結構加工及用途探討 184 6.5.2 陣列梯形結構加工及用途探討 188 6.5.3 陣列錐柱結構加工及用途探討 193 第七章 結論與未來展望 197 7.1 結論 197 7.2 研究成果 198 7.3 研究貢獻 200 7.4 鑽石精微散熱結構可行性討論 201 7.5 未來展望 203 參考文獻 204 附錄 214 附錄A 214 附錄B 215

    1. G. Roos, 2016. MEMS Market: Steady Growth, Lower ASPs Ahead, EPSNews. https://epsnews.com
    2. Microelectromechanical Systems (MEMS) Market Size & Analysis By Application (Automotive, Consumer Electronics, Industrial, Healthcare), By Region (NA, Europe, APAC, MEA, LA), And Segment Forecasts, 2014 - 2024, Grand View Research , 978-1-68038-769-8.
    3. Augmented Reality (AR) Market Analysis By Component (Hardware and Software), Display (Head-Mounted Display, Head-Up Display, and Smart Glass), Application (Aerospace & Defense, Medical, Gaming, Industrial, Automotive & E-commerce & Retail) And Segment Forecasts To 2024, Grand View Research, 978-1-68038-820-6.
    4. 蘇宇庭,2017,未來三年AR軟硬體產值將破12兆元,商業週刊1561期,pp.108-110
    5. 洪千惠,2012,微型投影光引擎技術進攻車用HUD、特殊應用市場, https://www.digitimes.com.tw
    6. M. Pressman, 2017. Morgan stanley: tesla is proof that one billion electric vehicles will be on the road by 2050, telsa news.
    7. 林東漢,2001,放電加工用之電源供應手段,中華民國發明專利,I586980。
    8. R. Casanueva, F.J. Azcondo, C. Brañas, S. Bracho, 2005. Analysis, Design and experimental results of a high-frequency power supply for spark erosion, IEEE transactions on power electronics, vol. 20, pp.361-369.
    9. D.K. Chung, H.S. Shin, B.H. Kim, C.N. Chu, 2011. High frequency micro wire edm for electrolytic corrosion prevention, International Journal Of Precision Engineering And Manufacturing, vol.12, pp.1125-1128.
    10. M.A. Erawan, A. Yahya, K. Nor Hisham, S. Samion, Z. Abu bakar, T. Andromeda, 2014. Power generator of electrical discharge machining (EDM) system, Applied Mechanics and Materials, vol.554, pp.638-642.
    11. S.T. Chen, C.H. Chen, 2017. Development of a novel micro w-EDM power source with a multipleResistor-Capacitor (mRC) relaxation circuit for machininghigh-melting point, -hardness and -resistance materials, Journal of Materials Processing Technology, vol.240, pp.370-381.
    12. H. Kinoshita, Y. Hayashi, 2003. Study in micro wire EDM, EDM Technology vol.2, pp.24-29.
    13. Y.S. Liao, S.T. Chen, C.S. Lin, 2005. Development of a high precision tabletop versatile CNC wire-EDM for making intricate micro parts, Journal of micromechanics and microengineering, vol.15, pp.245-253.
    14. F.Z. Han, G. Cheng, Z.J. Feng, S. Isago, 2008. Thermo-mechanical analysis and optimal tension control of micro wire electrode, International Journal of Machine Tools & Manufacture vol.48, pp.922-931.
    15. M.T. Moore, M.K. Lubic, 2012. In-line strainer with tension control mechanisms for use on hightensile wire, US Patent Application, no. 0138882.
    16. B. Kuriachen, K.P. Somashekhar, J. Mathew, 2015. Multiresponse optimiza -tion of micro-wire electrical discharge machining process, International Journal of Advanced Manufacturing Technology, vol.76, pp.91-104.
    17. Q. Li, J.C. Bai 1, Y.S. Fan, Z.Y. Zhang, 2016. Study of wire tension control system based on closed loop PID control in HS-WEDM, International Journal of Advanced Manufacturing Technology, vol.82, pp.1089-1097.
    18. K. Suzuki, Y. Shiraishi, N. Nakajima, M. Iwai, S. Ninomiya, Y. Tanaka, T. Uematsu, 2009. Development of new PCD made up of boron goped diamond particles and its machinability by EDM, Advanced Materials Research, vol.76-78, pp.684-689.
    19. 張智賢,2011,桌上型裝主軸超精微CNC工具機開發與細胞鏡檢模仁製作研究,國立臺灣師範大學機電工程學研究所,碩士論文。
    20. M. Iwaia, S. Ninomiya, K. Suzuki, 2013. Improvement of EDM properties of PCD with electrode vibrated by ultrasonic transducer, The Seventeenth CIRP Conference on Electro Physical and Chemical Machining (ISEM), Procedia CIRP 6, pp.146-150.
    21. 連家顥,2015,智能化對稱高速主軸研磨機開發與LED碳化鎢探針快速研削研究,國立臺灣師範大學機電工程學研究所,碩士論文。
    22. SNB. Oliaei, Y. Karpat, 2016. Fabrication of PCD mechanical planarization tools by using μ-wire electrical discharge machining, 18th CIRP Conference on Electro Physical and Chemical Machining (ISEM XVIII), Procedia CIRP 42, pp.311-316.
    23. G.S. Raju, 1994. Chemical assisted mechanical polishing and planarization of CVD diamond substrates for MCM application, M.S.E.E. Thesis, University of Arkansas Library, Fayetteville, AR.
    24. A.P. Malshe, B.S. Park, W.D. Brown, H.A. Naseem, 1999. A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates, Diamond and Related Materials, vol.8, pp.1198-1213.
    25. S. Odake, H. Ohfuji, T. Okuchi, H. Kagi, H. Sumiya, 2009. Pulsed laser processing of nano-polycrystalline diamond: A comparative study with single crystal diamond, Diamond & Related Materials, vol.18, pp.877-880.
    26. G. Teodoro, M. Sichen, K. Marcell, Q. Niels, 2018. Freestanding optical micro-disk resonators in single-crystal diamond by reactive ion etching and multidirectional focused ion-beam milling, Proceedings of SPIE, vol.10547. pp.105470R-1-105470R-6.
    27. 李淑蓮,2013,3D IC的機會與挑戰,北美智權報,http://www.naipo.com
    28. B. Black, D. Nelson, C. Webb, and N. Samra, 2004. 3D Processing Technology and Its Impact on iA32 Microprocessors, in Proceedings of International Conference on Computer Design, pp.316-318.
    29. S. Borkar, 2011. 3D integration for energy efficient system design, in Proceedings of International Conference on Design Autom pp.214-219.
    30. R. Patti, 2007. Impact of Wafer-Level 3D Stacking on the Yield of ICs, Future fab international, https://spectrum.ieee.org/computing/software/future-fab.
    31. H.H.S. Lee, K. Chakrabarty, 2009. Test challenges for 3D integrated circuits, IEEE design and test of computers, Special issue on 3D IC design and test, vol.26, pp.26-35.
    32. 郭佳儱,1999,微放電加工技術於MEMS之應用,機械月刊,第25卷,第11 期,pp.304-313.
    33. Jameson, 2001. E. C. Electrical Discharge Machining, p.8.
    34. Jameson, 2001. E. C. Electrical Discharge Machining, pp.10-12.
    35. C. Sommer, 2000. Non-traditional machining handbook, Advance Publishing, Inc., pp.117-124.
    36. K. Egashira, T. Masuzawa, 1999. Micro ultrasonic Machining by the Application of Work piece Vibration, Annals of the CIRP, vol.48, No.1, pp.131-134.
    37. 齋藤長男、賴耿陽譯,1981,放電加工機活用,復漢出版社, pp 7-57.
    38. 陳祈宏,2014,高效能精微線切割放電加工電源開發,國立臺灣師範大學機電工程學系研究所,碩士論文。
    39. S.T. Chen, H.Y. Yang, 2009. Study of an ultrafine w-EDM technique, Journal of micromechanics and microengineering, Journal of Micromechanics and Microengineering, vol.19, no.2, pp.115033-115041.
    40. S.T Chen, 2007. A high-efficiency approach for fabricatingmass micro holes by batch micro EDM, J. Micromech. Microeng, vol.17, pp.1961-1970.
    41. 齋藤長男,1979,放電加工のしくみと100%活用法,三菱電機(株) ,pp.40-67.
    42. E.J. Weller, 1984. Nontraditional Machining Processes, Society of manufacturing engineers, pp.162-170.
    43. O.I. Leipunski, 1939. Synthetic diamonds, Usp Khim, Vol. 8, pp.1519-1534.
    44. 鑽石的特性,吳舜田國際寶石鑑定研習中心: http://www.tenwu.com/。
    45. F.P. Incropera, D.P. Dewitt, T. L. Bergman, Adrienne S.Lavine, 2013. Foundations of Heat Transfer sixth edition, International Student Version, pp.171-178.
    46. F.P. Incropera, D.P. Dewitt, T.L. Bergman, A.S. Lavine, 2013. Foundations of Heat Transfer sixth edition, International Student Version, pp.279-317.
    47. V.D. Blank, B.A. Kulnitskiy, I.A. Perezhogin, 2009. Structural peculiarities of carbon onions, formed by four different methods: Onions and diamonds, alternative products of graphite high-pressure treatment, DSCRipta Materialia, vol.60, pp.407-410.
    48. 陳順同,2016,超精密加工,講義,國立臺灣師範大學機電工程學系。
    49. 王櫻茂,1972,材料科學,三民書局。
    50. S.T. Chen, C.H. Chang, 2013. Development of an ultrathin BD-PCD wheel-tool for in situ microgroove generation on NAK80 mold steel, Journal of Materials Processing Technology, vol. 213, pp.740-751.
    51. 宋健民,2000,鑽石合成,台北市:全華科技圖書股份有限公司。
    52. HORIBA Scientific:http://www.horiba.com.
    53. T. Schuelke, T.A. Grotjohn, 2013. Diamond polishing, Diamond & Related Materials, vol.32, pp.17-26.
    54. 1960. Metal Oxide Semiconductor (MOS) Transistor Demonstrated.
    55. C Galup-Montoro, Schneider MC, 2007. MOSFET modeling for circuit analysis and design, World Scientific. vol.83. ISBN 981-256-810-7.
    56. N. R Malik, 1995. Electronic circuits: analysis, simulation, and design.
    57. Brown, Lesley, 2007. Shorter Oxford English Dictionary II Sixth, Oxford: Oxford University press, p.3611.
    58. D.C. Jiles, 1998. Introduction to Magnetism and Magnetic Materials 2, CRC, ISBN 0412798603.
    59. 湯士源,2017,磁性材料及元件技術最新發展,M材料世界網, https://www.materialsnet.com.tw/DocView.aspx?id=25211。
    60. 姚永德,蔡志申,2017,磁性科技與應用,國立臺灣師範大學出版中心, pp.409-428.
    61. Brady, G. Stuart, H.R. Clauser, J. A. Vaccari, 2002. Materials Handbook, An Encyclopedia for Managers. McGraw-Hill Professional, ISBN 0-07-136076-X.
    62. 黃淳權,2005,電磁學,滄海書局,pp.(3-2)-(3-3)。
    63. A.E. Fitzgerald, C. Kingsley, S.D. Umans , 2002. Electric machinery. McGraw-Hill Professional.
    64. 姚永德,蔡志申,2017,磁性科技與應用,國立臺灣師範大學出版中心,pp.14-15.
    65. D.G. Fink, D. Christiansen, 1989. Electronics engineers' handbook, ISBN 978-0-07-020982-4.
    66. D.K. Cheng, 1989. Field and Wave Electromagnetics, 2nd Edition. Addison-Wesley Longman, Inc. p.7.
    67. D.K. Cheng, 1989. Field and Wave Electromagnetics, 2nd Edition. Addison-Wesley Longman, Inc. pp.264-266.
    68. E. Lenz, 1833. Ueber die Bestimmung der Richtung der durch elektodynamische Vertheilung erregten galvanischen Ströme, Annalen der Physik und Chemie 107 (31), pp.483-494.
    69. D. Halliday, R. Resnick, J. Walker, 2005. Fundamental of Physics 7th, Wiley, pp.691-692.
    70. J.D. Jackson, 1999. Classical Electrodynamics 3rd ed, Wiley, ch. 5.
    71. 台中精機,立式綜合加工機,http://www.or.com.tw/。
    72. 慶鴻機電工業股份有限公司,2008,CNC線切割放電加工機,線切割機保養手冊,B1 edition。
    73. 黃瑋平,2011,低成本高剛性微型工具機開發與高精度陣列光學微模具製作研究,國立臺灣師範大學機電科技學系,碩士論文。
    74. AlteraDE0, terasIC, http://www.terasic.com.tw/cgi-bin/page/archive.pl?CategoryNo=139&Language=English&No=593.
    75. 高功率電源供應器, 台灣百科股份有限公司,http://www.bktw.com.tw/zh-tw/。
    76. 微型直流馬達, FAULHABER, http://www.faulhaber.com/。
    77. 混合訊號示波器,Tektronix,http://www.tek.com。
    78. 工具顯微鏡,漢磊股份有限公司,http://www.aixon.com.tw/。
    79. 掃描式電子顯微鏡,JEOL,http://www.jeol.com/Default.aspx?tabid=36。
    80. 3D測量雷射共焦顯微鏡,OLYMPUS,http://www.olympus-ims.com。
    81. 黃銅電極(250 µm), TECHNOS株式會社, http://www.bedra.com/。
    82. 含硼聚晶鑽石,FACT江信有限公司,http://www.factdiamond.com/website/fact/index.php?m=p&pro=bd。
    83. C.K. Alexander, M.N.O. Sadiku, 2006. Fundamentals of Electric Circuits 3, McGraw-Hill, pp.35-36.
    84. 王善進,張濤,電磁場與電磁波,北京大學出版社,pp.26-29。
    85. A. Jaus, 2005. Navigating the Regulatory Maze with Optocouplers, Power Electronics Technology, pp.48-52.
    86. 華偉,周文定,2002,現代電力電子器件及其應用,清華大學出版社有限公司。
    87. STMicroelectronics N.V. (意法半導體),https://www.digikey.tw/。
    88. Toshiba:https://www.mouser.tw/datasheet/2/408/TLP250H_datasheet_en_20151224-771279.pdf。
    89. Infineon Technologies Americas Corp,http://www.irf.com/product-info/datasheets/data/irf9640.pdf。
    90. 楊弘意,2010,複合式精微工具機開發與應用,國立臺灣師範大學機電工程學研究所,碩士論文,pp.54-55.
    91. 洪琪鈺,2015,多線式精微線切割放電加工技術開發,國立臺灣師範大學機電工程學研究所,碩士論文。
    92. J.C. Rebelo , A.M. Dias, D. Kremer, J.L. Lebrun, 1997. Influence of EDM pulse energy on the surface integrity of martensitic steels, Journal of Materials Processing Technology 84, pp.90-96.
    93. M. Shabgard, S.N.B. Oliaei, M. Seyedzavvar, A. Najadebrahimi, 2011. Experi -mental investigation and 3D finite element prediction of the white layer thickness, heat affected zone, and surface roughness in EDM process, Journal of Mechanical Science and Technology 25, pp.3173-3183.
    94. T.J. Je, D.S. Choi1, E.C. Jeon, E.S Park, H.J Choi, Study on machining high aspect ratio microchannel structures using a shaping method by a diamond tools, Division of Nano-Mechanical System, Korea Institute of Machinery and materials Daejeon, pp. 305-343.
    95. M.D. Feudis, A.P. Caricato, A. Taurino, P.M. Ossi, C. Castiglioni, L. Brambilla, G. Maruccio, A.G. Monteduro, E. Broitman, G. Chiodini, M. Martino, 2017. Diamond graphitization by laser-writing for all-carbon detector applications, Diamond & Related Materials 75, pp.25-33.
    96. 陳建智,2018,避熱式旋轉放電法於針尖1μm之單晶鑽石探針高效成形研究,國立臺灣師範大學機電工程學研究所,碩士論文。
    97. JASCO, Laser Raman Spectrometer (NRS-4100), http://jascoinc.com/.
    98. 黃忠良,天然鑽石合成鑽之物性,復漢出版社印行,pp.125-129.
    99. 王曉剛,2009,熱傳學講義,義守大學機械與自動化工程系。
    100. N. Takayama, J. ishizuka, J.W. Yan, 2017. Microgrooving of a single-crystal diamond tool using a picosecond pulsed laser and some cutting tests, WCMNM 2017, ch. 67.
    101. Y. Saito, H. Yabu, 2015. Bio-Inspired low frictional surfaces having micro-dimple arrays prepared with honeycomb patterned porous films as wet etching masks, Langmuir 2015, pp.959-963.
    102. Diamond shades, Global Diamond Industry Essential Charts, pp.10-11.
    103. J.J. Bae , S.C. Lim , G.H. Han , Y.W. Jo , D.L. Doung, E.S. Kim , S.J. Chae , T.Q. Huy , N.V. Luan , Y.H. Lee, 2012. Heat Dissipation of Transp arent Graphene Defoggers, Wiley-vch Verlag GmbH & Co. KGaA, Weinheim, pp.4819-4826.
    104. Global Industry Analysts Inc., Superhard Materials-A Global Strategic Business Report, http://www.strategyr.com/.
    105. S.T. Chen, 2007. A high-efficiency approach for fabricating mass micro holes by batch micro EDM, Journal of Micromechanics and Microengineering, vol.17, no.10, pp.1961-1970.
    106. T-Global technology,材料熱導率與熱導係數: http://www.tglo bal.com.tw/what-is-thermal-conductivity-heat-transfer-coefficient.
    107. Tug ̆rul O ̈ zel, Yig ̆it Karpat, 2003. Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks, International Journal of Machine Tools & Manufacture 45, pp.467-479.
    108. G. Demazeau, 1995. High pressure diamond and cubic boron nitride synthesis, Diamond and Related Materials 4, pp.284-287.

    下載圖示
    QR CODE