研究生: |
林辰蔓 Lin, Chen-Man |
---|---|
論文名稱: |
利用單分子螢光共振能量轉移光譜觀察蛋白脂質體中鈉離子依賴性膽酸轉運蛋白 (ASBT) 結構研究 Conformational Studies of the Apical Sodium-dependent Bile acid Transporter (ASBT) in Proteoliposome Using Single-Molecule Fluorescence Resonance Energy Transfer Spectroscopy |
指導教授: |
李以仁
Lee, I-Ren |
口試委員: |
胡念仁
Hu, Nien-Jen 孫英傑 Sun, Ying-Chieh 李以仁 Lee, I-Ren |
口試日期: | 2022/07/25 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 鈉離子依賴性膽酸轉運蛋白 (ASBT) 、腸肝循環 、高膽固醇血症 、單分子螢光共振能量轉移 |
英文關鍵詞: | Apical sodium-dependent bile acid transporter (ASBT), enterohepatic circulation, hypercholesterolemia, single-molecule fluorescence resonance energy transfer (smFRET) |
研究方法: | 實驗設計法 、 觀察研究 |
DOI URL: | http://doi.org/10.6345/NTNU202201127 |
論文種類: | 學術論文 |
相關次數: | 點閱:176 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈉離子依賴性膽酸轉運蛋白 (Apical sodium-dependent bile acid transporter; ASBT) 利用鈉離子濃度梯度來驅動運輸膽酸 (bile acid),在腸肝循環中扮演著回收膽酸的重要角色。當前開發藥物以抑制 ASBT 功能使其減少膽酸的回收,進而降低膽固醇水平被視為具有治療高膽固醇血症(hypercholesterolemia)的潛力。目前對於 ASBT 的了解僅有三種已知的靜態晶體結構,分別為一個與兩個鈉離子及受質結合的向內開口型 (inward-facing),兩個沒有任何鈉離子及受質結合的向內開口型及向外開口型 (outward-facing)。然而,這些靜態結構不足以提供一個完整的運輸機制。我們利用單分子螢光共振能量轉移光譜觀察蛋白脂質體與微胞中 ASBT 的構型轉變。我們在 1:20000 蛋白脂質體的實驗中觀察到在三種條件(鉀離子;鈉離子;鈉離子與牛黃膽酸)下 EFRET 值的分布變化與交替通透機制 (alternating access mechanism) 的推測相近。透過分析不同條件下的跳動種類可以發現,鉀離子以頻繁跳動為主要的行為模式,可進一步證明 ASBT 會在兩種構型之間做轉換,但可能存在著一道屏障;而在鈉離子與同時含有牛黃膽酸的情況下則是以傾向於向內開口為主要的行為模式,此現象可以證明鈉離子與牛黃膽酸主導著構型轉變關鍵,這些研究結果提供了 ASBT 更詳細的運輸機制。
Sodium-dependent bile acid transporter (ASBT), which utilizes concentration gradient of sodium cation to transport bile acid, plays an important role in the recovery of bile acid in the enterohepatic circulation. It was proposed that the recycling of bile acids, gets retarded when the function of ASBT was inhibited; thereby reducing cholesterol levels. Thus, ASBT is regarded as a target for the development of drugs for the treatment of hypercholesterolemia. Currently, only three known crystal structures of ASBT were identified. Inward-facing structure binding with two sodium cations and substrate bound was found in ASBT homolog from Neisseria meningitides (ASBTNM), and Apo structure with inward- and outward-facing were found in ASBT homolog from Yersinia frederiksenii (ASBTYF). However, these static structures are not sufficient to provide a complete transport mechanism. We utilized single-molecule fluorescence resonance energy transfer (smFRET) microscopy to study the conformational transition of ASBT in micelles and proteoliposomes. In the experiment of 1:20000 proteoliposomes, we observed that the distribution of FRET under the three conditions is similar to the speculation of the alternating access mechanism, which provides a more detailed transport mechanism for ASBT.
[1] Hunte, C.; Richers, S., Lipids and membrane protein structures. Curr Opin Struct Biol 2008, 18 (4), 406-11.
[2] Balakrishnan, A.; Polli, J. E., Apical sodium dependent bile acid transporter (ASBT, SLC10A2): a potential prodrug target. Mol Pharm 2006, 3 (3), 223-30.
[3] Tsukuda, S.; Iwamoto, M.; Watashi, K., NTCP (Sodium Taurocholate Cotransporting Polypeptide). In Encyclopedia of Signaling Molecules, Choi, S., Ed. Springer New York: New York, NY, 2017; pp 1-8.
[4] Hepner, G. W.; Demers, L. M., Dynamics of the Enterohepatic Circulation of the Glycine Conjugates of Cholic, Chenodeoxycholic, Deoxycholic, and Sulfolithocholic Acid in Man. Gastroenterology 1977, 72 (3), 499-501.
[5] Dawson, P. A.; Haywood, J.; Craddock, A. L.; Wilson, M.; Tietjen, M.; Kluckman, K.; Maeda, N.; Parks, J. S., Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice. J Biol Chem 2003, 278 (36), 33920-7.
[6] Cohn, J. S.; Kamili, A.; Wat, E.; Chung, R. W.; Tandy, S., Dietary phospholipids and intestinal cholesterol absorption. Nutrients 2010, 2 (2), 116-27.
[7] Xiao, L.; Pan, G., An important intestinal transporter that regulates the enterohepatic circulation of bile acids and cholesterol homeostasis: The apical sodium-dependent bile acid transporter (SLC10A2/ASBT). Clin Res Hepatol Gastroenterol 2017, 41 (5), 509-515.
[8] Zhang, E. Y.; Phelps, M. A.; Cheng, C.; Ekins, S.; Swaan, P. W., Modeling of active transport systems. Advanced Drug Delivery Reviews 2002, 54 (3), 329-354.
[9] Hallén, S.; Björquist, A.; Östlund-Lindqvist, A. M.; Sachs, G., Identification of a Region of the Ileal-Type Sodium/Bile Acid Cotransporter Interacting with a Competitive Bile Acid Transport Inhibitor. Biochemistry 2002, 41 (50), 14916-14924.
[10] Mittermayer, F.; Caveney, E.; De Oliveira, C.; Gourgiotis, L.; Puri, M.; Tai, L. J.; Turner, J. R., Addressing unmet medical needs in type 2 diabetes: a narrative review of drugs under development. Curr Diabetes Rev 2015, 11 (1), 17-31.
[11] Annaba, F.; Ma, K.; Kumar, P.; Dudeja, A. K.; Kineman, R. D.; Shneider, B. L.; Saksena, S.; Gill, R. K.; Alrefai, W. A., Ileal apical Na+-dependent bile acid transporter ASBT is upregulated in rats with diabetes mellitus induced by low doses of streptozotocin. American Journal of Physiology-Gastrointestinal and Liver Physiology 2010, 299 (4), G898-G906.
[12] Wu, Y.; Aquino, C. J.; Cowan, D. J.; Anderson, D. L.; Ambroso, J. L.; Bishop, M. J.; Boros, E. E.; Chen, L.; Cunningham, A.; Dobbins, R. L.; Feldman, P. L.; Harston, L. T.; Kaldor, I. W.; Klein, R.; Liang, X.; McIntyre, M. S.; Merrill, C. L.; Patterson, K. M.; Prescott, J. S.; Ray, J. S.; Roller, S. G.; Yao, X.; Young, A.; Yuen, J.; Collins, J. L., Discovery of a Highly Potent, Nonabsorbable Apical Sodium-Dependent Bile Acid Transporter Inhibitor (GSK2330672) for Treatment of Type 2 Diabetes. Journal of Medicinal Chemistry 2013, 56 (12), 5094-5114.
[13] Jardetzky, O., Simple allosteric model for membrane pumps. Nature 1966, 211 (5052), 969-70.
[14] Weyand, S.; Shimamura, T.; Beckstein, O.; Sansom, M. S.; Iwata, S.; Henderson, P. J.; Cameron, A. D., The alternating access mechanism of transport as observed in the sodium-hydantoin transporter Mhp1. J Synchrotron Radiat 2011, 18 (1), 20-3.
[15] Karpowich, N. K.; Wang, D. N., Structural biology. Symmetric transporters for asymmetric transport. Science 2008, 321 (5890), 781-2.
[16] Forrest, L. R.; Rudnick, G., The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology (Bethesda) 2009, 24, 377-386.
[17] Bartels, K.; Lasitza-Male, T.; Hofmann, H.; Löw, C., Single-Molecule FRET of Membrane Transport Proteins. ChemBioChem 2021, 22 (17), 2657-2671.
[18] Hu, N. J.; Iwata, S.; Cameron, A. D.; Drew, D., Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. Nature 2011, 478 (7369), 408-11.
[19] Geyer, J.; Wilke, T.; Petzinger, E., The solute carrier family SLC10: more than a family of bile acid transporters regarding function and phylogenetic relationships. Naunyn-Schmiedeberg's Archives of Pharmacology 2006, 372 (6), 413-431.
[20] Forrest, L. R.; Zhang, Y.-W.; Jacobs, M. T.; Gesmonde, J.; Xie, L.; Honig, B. H.; Rudnick, G., Mechanism for alternating access in neurotransmitter transporters. Proceedings of the National Academy of Sciences 2008, 105 (30), 10338-10343.
[21] Zhou, X.; Levin, E. J.; Pan, Y.; McCoy, J. G.; Sharma, R.; Kloss, B.; Bruni, R.; Quick, M.; Zhou, M., Structural basis of the alternating-access mechanism in a bile acid transporter. Nature 2014, 505 (7484), 569-573.
[22] Lu, P.-H.; Li, C.-C.; Chiang, Y.-W.; Liu, J.-H.; Chiang, W. T.; Chao, Y.-H.; Li, G.-S.; Weng, S.-E.; Lin, S.-Y.; Hu, N.-J., Dissecting the Conformational Dynamics of the Bile Acid Transporter Homologue ASBTNM. Journal of Molecular Biology 2021, 433 (4), 166764.
[23] Ku, C.-C. Conformational Dynamics of the Apical Sodium-dependent Bile acid Transporter (ASBT) Studied by Single-Molecule Fluorescence Resonance Energy Transfer Spectroscopy. 2021.
[24] Hardy, D.; Bill, R. M.; Jawhari, A.; Rothnie, A. J., Overcoming bottlenecks in the membrane protein structural biology pipeline. Biochem Soc Trans 2016, 44 (3), 838-44.
[25] Ritort, F., Single-molecule experiments in biological physics: methods and applications. J Phys Condens Matter 2006, 18 (32), R531-83.
[26] Dulin, D.; Lipfert, J.; Moolman, M. C.; Dekker, N. H., Studying genomic processes at the single-molecule level: introducing the tools and applications. Nature Reviews Genetics 2013, 14 (1), 9-22.
[27] Hochreiter, B.; Kunze, M.; Moser, B.; Schmid, J. A., Advanced FRET normalization allows quantitative analysis of protein interactions including stoichiometries and relative affinities in living cells. Scientific Reports 2019, 9 (1), 8233.
[28] Ishikawa-Ankerhold, H. C.; Ankerhold, R.; Drummen, G. P., Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM. Molecules 2012, 17 (4), 4047-132.
[29] Callen, D., Multiwavelength TIRF Microscopy Enables Insight into Actin Filaments. Photonic media 2015.
[30] Fish, K. N., Total internal reflection fluorescence (TIRF) microscopy. Curr Protoc Cytom 2009, Chapter 12, Unit12.18.
[31] 李以仁; 許顥頤; 秦志皞; 吳佳諭, 單分子螢光共振能量轉移光譜簡介. 化學 2015, 73 (4), 303-312.
[32] Zhao, Y.; Terry, D.; Shi, L.; Weinstein, H.; Blanchard, S. C.; Javitch, J. A., Single-molecule dynamics of gating in a neurotransmitter transporter homologue. Nature 2010, 465 (7295), 188-93.
[33] Cordes, T.; Vogelsang, J.; Tinnefeld, P., On the Mechanism of Trolox as Antiblinking and Antibleaching Reagent. Journal of the American Chemical Society 2009, 131 (14), 5018-5019.
[34] Aitken, C. E.; Marshall, R. A.; Puglisi, J. D., An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J 2008, 94 (5), 1826-35.
[35] Akyuz, N.; Altman, R. B.; Blanchard, S. C.; Boudker, O., Transport dynamics in a glutamate transporter homologue. Nature 2013, 502 (7469), 114-118.
[36] Wang, S.; Vafabakhsh, R.; Borschel, W. F.; Ha, T.; Nichols, C. G., Structural dynamics of potassium-channel gating revealed by single-molecule FRET. Nat Struct Mol Biol 2016, 23 (1), 31-36.