研究生: |
阮宇鴻 Hung Ngoc Nguyen |
---|---|
論文名稱: |
越南湄公河三角洲四種岩虎的種化與生態棲位分化 Speciation and niche analysis of four rock geckos (genus Cnemaspis) in Mekong Delta, Vietnam |
指導教授: |
林思民
Lin, Si-Min |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 99 |
中文關鍵詞: | 岩虎 、東南亞 、限制酶基因組測序 、時間棲位 、棲位分化 、越南 、彎趾虎 、種化 |
英文關鍵詞: | Cnemaspis, Cyrtodactylus, Niche partitioning, RAD-seq, Speciation, Southeast Asia, Temporal niche, Vietnam |
DOI URL: | http://doi.org/10.6345/NTNU201900272 |
論文種類: | 學術論文 |
相關次數: | 點閱:182 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在過去幾十年間,物種生態、分布、與種化之間的連結,一直是演化生物學上的研究重點。近年,具有高度多樣性的蜥蜴,逐漸成為各種時間與空間尺度生態學和演化生物學的研究對象。岩虎(Cnemaspis)是廣布在東南亞的類群,在地理分布和活動時間均呈現很大的種間變異,也使得本屬成為深具價值的研究對象。湄公河三角洲淋溶殘存的花崗岩石洞中,就分布著四種當地特有的岩虎,分別是坎山岩虎(C. nuicamensis)、鐸山岩虎(C. tucdupensis)、橙肢岩虎(C. aurantiacopes)、與雪尾岩虎(C. caudanivea)。這些洞穴壁虎極為狹窄的分布區域,以及特化的生態現象,成為我珍貴的研究題材。我利用次世代定序技術之中的限制酶基因組測序技術(RAD-seq),以瞭解這四個特有物種的演化過程。由於壁虎並沒有可供參考比對的基因組序列,因此我們利用不同的參數設定,嘗試對定序獲得的大量序列進行組裝,最後將相關的參數M設置為4,而n設置為7;相關的運算與評估過程描述於第一章。
在第二章之中,我則是利用第一章獲得的參數和組裝的序列進行溯祖運算,以估計種化過程的時間、遺傳交流、有效族群量的變動等等。結果發現這四種岩虎在地質年代中均呈現有效族群量的劇烈縮減,而受限的遺傳交流也證明逐漸消失的花崗石洞對它們的族群分化有重大的影響。壁虎對棲地的高度特化雖然促進牠們的種化,但是也導致牠們在演化過程中受困於原棲息地,而邁向演化的死胡同。我的研究強調這種對棲地極度專一的物種,在保育上有其重要性與急迫性。
從第二章的研究顯示近緣物種受到地形的阻隔,而呈現劇烈的遺傳分化。但是坎山岩虎與鐸山岩虎的地理位置相隔非常近,在過去的歷史之中,卻無法入侵對方的領域。因此在第三章之中,我試著對這兩個姊妹種的生態棲位進行量化,以了解牠們無法共域存在的原因。結果顯示這兩個物種在棲地偏好上雖然有細微的差異,但是不足以讓牠們存在明顯的生態分化。除了地理分隔的效應之外,生態棲位的保守性也解釋了牠們無法共存的原因。
在第四章,我試圖將研究角度延伸到整個岩虎屬在活動時間的生態區隔。有別於其他的壁虎,岩虎最特殊的現象就是牠們有極高比例日行性的物種。而在岩虎分布的範圍之中,彎趾虎(Cyrtodactylus)是一個分布和岩虎高度重疊的類群,在東南亞形成極高的物種多樣性。我們懷疑岩虎的日夜行性演化可能與牠們和彎趾虎的競爭有高度的相關。分析岩虎的演化樹,我發現岩虎在棲地的使用上具有高度的保守性,但是在時間的使用上具有高度的變異性,顯示對岩虎而言,時間棲位的改變是一個解決棲位競爭較為彈性的作法。雖然從模型上來說,雨量和濕度是一個影響日夜行性更為顯著的環境因子;但是加入彎趾虎之後,可以顯著改善模型的可信度。在彎趾虎不存在的地區,岩虎有較高的機會回復大部分壁虎正常的夜行性棲位。
For decades, the link among ecology, distribution and speciation has been the focus for evolutionary biologist. Recently, lizards as a widely distributed and highly diverse group, have emerged as new model organisms for ecological and evolutionary studies from various community levels at a variety of spatial and temporal scales. Rock geckos – genus Cnemaspis, are widely distributed in Southeast Asia and have diverse spatial ranges and temporal activity pattern among its species. This makes this genus a suitable model to study the relationship among ecology, distribution and speciation. The monophyletic group of four Cnemaspis species (C. nuicamensis, C. tucdupensis, C. caudanivea and C. aurantiacopes) are endemic to southern Mekong Delta and are isolated to multiple neighbor rocky areas. This distributional pattern provides an excellent chance to study genetic and ecological differentiation within a minute geographic scale. Therefore, I focused on investigation on the speciation and niche of these four species, especially the two sister species C. nuicamensis and C. tucdupensis.
In order to understand the speciation of these species, I inferred the historical demography by estimating the population parameters (population size, divergence time and gene flow) of these species. I utilized one of the powerful of Next Generation Sequencing tools, the Restriction site associated DNA sequencing, which can generate large genetic data to fill the necessity of data analyses. In order to overcome the caveat of RAD-seq without reference genome, I explored the influence of parameters on the output loci dataset in Chapter 1. By using the most recommended program for RAD-seq – STAKCS, I conducted the optimization of a de novo assembly for my downstream population genetics analyses. After iterating values of the main parameter of STACKS and comparing the resultants from multiple de novo loci assembly, the most optimized parameters for my RAD-seq dataset were selected as M = 4 and n = 7. Using the optimized parameter for my dataset from Chapter 1, I applied several coalescence-based approaches to estimate divergence times, gene flow and demographic fluctuations during speciation processes in Chapter 2. The results showed long-term population shrinkage in the four geckos and limited gene flow during their divergence, suggesting that the erosion and fragmentation of the granite boulder hills have had great impacts on these populations’ divergences and population declines. These results also showed that the specialist gecko’s habitat specialization has facilitated the fine-scaled speciation in these granite rocky hills; in contrast, specialization might also have pushed these species toward the edge of extinction. My study also emphasizes the conservation urgency of these vulnerable, cave-dependent geckos.
The results from Chapter 2 showed the limited dispersal ability of C. nuicamensis. And it was confirmed when the recent described Cyrtodactylus species, which occurs in similar habitat, can cross the range of both Cnemaspis sister species. Therefore, there is a question why C. nuicamensis did not cross to its sister species’ range. In Chapter 3, I investigate the realized niche of the two sister species to see if there is enough divergence in their habitat use for them to coexist. The results showed that there is somewhat difference in the habitat preference of the sister species but is unlikely enough to use distinct resource and be sympatric. This suggest that there is strong niche conservatism in Cnemaspis species which promoted speciation and prevent sympatry afterward.
In Chapter 4, I attempted to infer the link between the pattern of temporal activity among Cnemaspis species and the existence of sympatric Cyrtodactylus species. Diel activity and habitat use pattern across the phylogeny of Cnemaspis genus were analyzed. And the relationship between the temporal activity pattern of Cnemaspis species with the existence of sympatric Cyrtodactylus species along with other ecological factors was tested. I found strong phylogenetic signal in habitat use trait but not in temporal activity, showing that the temporal niche of this genus is more labile compare to microhabitat niche. Further, the absent of the competitor as Cyrtodactylus species may create an opportunity for Cnemaspis species to shift back to nocturnality.
Reference
Ahmed, I., & Jombart, T. (2011). adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics, 27(21), 3070–3071. doi:10.1093/bioinformatics/btr521
Alex Buerkle, C., & Gompert, Z. (2013). Population genomics based on low coverage sequencing: how low should we go? Molecular Ecology, 22(11), 3028–3035. doi:10.1111/mec.12105
Anderson, S. R., & Wiens, J. J. (2017). Out of the dark: 350 million years of conservatism and evolution in diel activity patterns in vertebrates. Evolution, 71(8), 1944–1959. doi:10.1111/evo.13284
Andolfatto, P., Davison, D., Erezyilmaz, D., Hu, T. T., Mast, J., Sunayama-Morita, T., & Stern, D. L. (2011). Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Research, 21(4), 610–617. doi:10.1101/gr.115402.110
Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G., & Hohenlohe, P. A. (2016). Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet, 17(2), 81–92. doi:10.1038/nrg.2015.28http://www.nature.com/nrg/journal/v17/n2/abs/nrg.2015.28.html#supplementary-information
Andrews, S. (2016). FastQC Version 0.11.5: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Attwood, S. W., & Johnston, D. A. (2001). Nucleotide sequence differences reveal genetic variation in Neotricula aperta (Gastropoda: Pomatiopsidae), the snail host of schistosomiasis in the lower Mekong Basin. Biological Journal of the Linnean Society, 73(1), 23–41. doi:10.1006/bijl.2000.0520
Baird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., … Johnson, E. A. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLOS ONE, 3(10), e3376. doi:10.1371/journal.pone.0003376
Balica, S., Dinh, Q., Popescu, I., Vo, T. Q., & Pham, D. Q. (2014). Flood impact in the Mekong Delta, Vietnam. Journal of Maps, 10(2), 257–268. doi:10.1080/17445647.2013.859636
Bauer, A. M., Jackman, T. R., Greenbaum, E., Giri, V. B., & de Silva, A. (2010). South Asia supports a major endemic radiation of Hemidactylus geckos. Molecular Phylogenetics and Evolution, 57(1), 343–352. doi:10.1016/j.ympev.2010.06.014
Baxter, S. W., Davey, J. W., Johnston, J. S., Shelton, A. M., Heckel, D. G., Jiggins, C. D., & Blaxter, M. L. (2011). Linkage Mapping and Comparative Genomics Using Next-Generation RAD Sequencing of a Non-Model Organism. PLOS ONE, 6(4), e19315. doi:10.1371/journal.pone.0019315
Beerli, P., & Palczewski, M. (2010). Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics, 185(1), 313–326. doi:10.1534/genetics.109.112532
Bolnick, D. I., Ingram, T., Stutz, W. E., Snowberg, L. K., Lau, O. L., & Pauli, J. S. (2010). Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proceedings of the Royal Society B: Biological Sciences, 277(1689), 1789–1797. doi:10.1098/rspb.2010.0018
Boucher, F. C., Zimmermann, N. E., & Conti, E. (2016). Allopatric speciation with little niche divergence is common among alpine Primulaceae. Journal of Biogeography, 43(3), 591–602. doi:10.1111/jbi.12652
Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., … Drummond, A. J. (2014). BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLOS Computational Biology, 10(4), e1003537. doi:10.1371/journal.pcbi.1003537
Buhay, J. E., Moni, G., Mann, N., & Crandall, K. A. (2007). Molecular taxonomy in the dark: Evolutionary history, phylogeography, and diversity of cave crayfish in the subgenus Aviticambarus, genus Cambarus. Molecular Phylogenetics and Evolution, 42(2), 435–448. doi:10.1016/j.ympev.2006.07.014
Camargo, A., Avila, L. J., Morando, M., & Sites, J. W. (2012). Accuracy and precision of species trees: effects of locus, individual, and base pair sampling on inference of species trees in lizards of the Liolaemus darwinii group (Squamata, Liolaemidae). Systematic Biology, 61(2), 272–288. doi:10.1093/sysbio/syr105
Cariou, M., Duret, L., & Charlat, S. (2016). How and how much does RAD-seq bias genetic diversity estimates? BMC Evolutionary Biology, 16(1), 240. doi:10.1186/s12862-016-0791-0
Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W., & Postlethwait, J. H. (2011). Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes, Genomes, Genetics, 1(3), 171–182. doi:10.1534/g3.111.000240
Catchen, J. M., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. (2013). Stacks: an analysis tool set for population genomics. Molecular Ecology, 22(11), 3124–3140. doi:10.1111/mec.12354
Chu, J.-H., Wegmann, D., Yeh, C.-F., Lin, R.-C., Yang, X.-J., Lei, F.-M., … Li, S.-H. (2013). Inferring the geographic mode of speciation by contrasting autosomal and sex-linked genetic diversity. Molecular Biology and Evolution, 30(11), 2519–2530. doi:10.1093/molbev/mst140
Clavel, J., Julliard, R., & Devictor, V. (2011). Worldwide decline of specialist species: Toward a global functional homogenization? Frontiers in Ecology and the Environment, 9(4), 222–228. doi:10.1890/080216
Cope, E. D. (1896). The primary factors of organic evolution. Specific Papers in Paleontology (Vol. 23). Chicago: Open Court Publishing Company.
Culver, D. C. (1982). Cave Life: Evolution and Ecology. Cambridge: Harvard University Press.
Culver, D. C., & Pipan, T. (2009). The biology of caves and other subterranean habitats. Oxford; New York: Oxford University Press.
Cunningham, H. R., Rissler, L. J., Buckley, L. B., & Urban, M. C. (2015). Abiotic and biotic constraints across reptile and amphibian ranges. Ecography, n/a-n/a. doi:10.1111/ecog.01369
Davey, J. W., Cezard, T., Fuentes-Utrilla, P., Eland, C., Gharbi, K., & Blaxter, M. L. (2013). Special features of RAD Sequencing data: implications for genotyping. Molecular Ecology, 22(11), 3151–3164. doi:10.1111/mec.12084
Davies, T. J., Meiri, S., Barraclough, T. G., & Gittleman, J. L. (2007). Species co-existence and character divergence across carnivores. Ecology Letters, 10(2), 146–152. doi:10.1111/j.1461-0248.2006.01005.x
Davis, H. R., Grismer, L. L., Cobos, A. J., Murdoch, M. L., Sumarli, A. X., Anuar, S., … Quah, E. S. H. (2018). Checklist of the herpetofauna of Hutan Lipur Gunung Senyum, Pahang, Peninsular Malaysia. Russian Journal of Herpetology, 25(3), 207–220.
Day, E. H., Hua, X., & Bromham, L. (2016). Is specialization an evolutionary dead end? Testing for differences in speciation, extinction and trait transition rates across diverse phylogenies of specialists and generalists. Journal of Evolutionary Biology, 29(6), 1257–1267. doi:10.1111/jeb.12867
Dennis, R. L. H. H., Dapporto, L., Fattorini, S., & Cook, L. M. (2011). The generalism-specialism debate: The role of generalists in the life and death of species. Biological Journal of the Linnean Society, 104(4), 725–737. doi:10.1111/j.1095-8312.2011.01789.x
Devictor, V., Julliard, R., & Jiguet, F. (2008). Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos, 117(4), 507–514. doi:10.1111/j.0030-1299.2008.16215.x
Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361. doi:10.1007/s12686-011-9548-7
Eaton, D. A. R. (2014). PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics, 30(13), 1844–1849. doi:10.1093/bioinformatics/btu121
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 14(8), 2611–2620. doi:10.1111/j.1365-294X.2005.02553.x
Ferchaud, A.-L., & Hansen, M. M. (2016). The impact of selection, gene flow and demographic history on heterogeneous genomic divergence: three-spine sticklebacks in divergent environments. Molecular Ecology, 25, 238–259. doi:10.1111/mec.13399
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. doi:10.1002/joc.5086
Fox, J., & Weisberg, S. (2011). An {R} Companion to Applied Regression (Second). Thousand Oaks, CA: Sage. Retrieved from http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
Freedman, A. H., Gronau, I., Schweizer, R. M., Ortega-Del Vecchyo, D., Han, E., Silva, P. M., … Novembre, J. (2014). Genome Sequencing Highlights the Dynamic Early History of Dogs. PLoS Genet, 10(1), e1004016. doi:10.1371/journal.pgen.1004016
Fritz, S. A., & Purvis, A. (2010). Selectivity in mammalian extinction risk and threat types: A new measure of phylogenetic signal strength in binary traits. Conservation Biology, 24(4), 1042–1051. doi:10.1111/j.1523-1739.2010.01455.x
Gamble, T., Greenbaum, E. L. I., Jackman, T. R., & Bauer, A. M. (2015). Into the light: diurnality has evolved multiple times in geckos. Biological Journal of the Linnean Society, 115(4), 896–910. doi:10.1111/bij.12536
Gautier, M., Gharbi, K., Cezard, T., Foucaud, J., Kerdelhué, C., Pudlo, P., … Estoup, A. (2013). The effect of RAD allele dropout on the estimation of genetic variation within and between populations. Molecular Ecology, 22(11), 3165–3178. doi:10.1111/mec.12089
Goodman, B. A., Miles, D. B., & Schwarzkopf, L. (2008). Life on the rocks: Habitat use drives morphological and performance evolution in lizards. Ecology, 89(12), 3462–3471. doi:10.1890/07-2093.1
Goodyear, S. E., Pianka, E. R., & Desert, G. V. (2011). Spatial and Temporal Variation in Diets of Sympatric Lizards ( Genus Ctenotus ) in the Great Victoria Desert , Western Australia Published By : The Society for the Study of Amphibians and Reptiles Spatial and Temporal Variation in Diets of Sympatric Lizar, 45(3), 265–271. doi:10.1670/10-190.1
Gordon, C. E., Dickman, C. R., & Thompson, M. B. (2010). What factors allow opportunistic nocturnal activity in a primarily diurnal desert lizard (Ctenotus pantherinus)? Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology, 156(2), 255–261. doi:10.1016/j.cbpa.2010.02.007
Grismer, L. Lee, Ahmad, N., Onn, C. K., Belabut, D., Muin, M. A., Wood, P. L., & Grismer, J. L. (2009). Two new diminutive species of Cnemaspis strauch 1887 (Squamata: Gekkonidae) from peninsular Malaysia. Zootaxa, 1887(2019), 40–56. doi:10.5281/zenodo.186045
Grismer, L. Lee, Onn, C. K., Quah, E., Muin, M. A., Savage, A. E., Grismer, J. L., … Remegio, A. C. (2010). Another new, diminutive Rock Gecko (Cnemaspis Strauch) from Peninsular Malaysia and a discussion of resource partitioning in sympatric species pairs. Zootaxa, 2569(2569), 55–66. doi:10.5281/zenodo.197342
Grismer, L. Lee, Wood, P. J. L., Anuar, S., Riyanto, A., Ahmad, N., Muin, M. A., … Pauwels, O. S. G. (2014). Systematics and natural history of Southeast Asian Rock Geckos (genus Cnemaspis Strauch, 1887) with descriptions of eight new species from Malaysia, Thailand, and Indonesia. Zootaxa, 3880(1), 147. doi:10.11646/zootaxa.3880.1.1
Grismer, L. Lee, Wood, P. L., Quah, E. S. H. H., Anuar, S., Ngadi, E., Ahmad, N., … Ahmad, N. (2015). A new insular species of Rock Gecko (Cnemaspis Boulenger) from Pulau Langkawi, Kedah, Peninsular Malaysia. Zootaxa, 3985(2), 16. doi:10.11646/zootaxa.3985.2.2
Grismer, Lee L. (2011). Lizards of Peninsular Malaysia, Singapore and their Adjacent Archipelagos. Edition Chimaira.
Grismer, Lee L., & Ngo, V. T. (2007). Four new species of the Gekkonid genus Cnemaspis Strauch 1887 (Reptilia : Squamata) from Southern Vietnam. Herpetologica, 63(4), 482–500. doi:10.1655/0018-0831(2007)63[482:FNSOTG]2.0.CO;2
Grismer, Lee L., & Quah, E. S. H. (2019). An updated and annotated checklist of the lizards of Peninsular Malaysia, Singapore, and their adjacent archipelagos. Zootaxa, 4545(2), 230–248.
Grismer, Lee L., Wood, P. J. L., Ngo, T. Van, & Murdoch, M. L. (2015). The systematics and independent evolution of cave ecomorphology in distantly related clades of Bent-toed Geckos (Genus Cyrtodactylus Gray, 1827) from the Mekong Delta and islands in the Gulf of Thailand. 2015, 3980(1), 21. doi:10.11646/zootaxa.3980.1.6
Grismer, Lee L., Wood, P. J. L., Quah, E. S. H., Anuar, S., Muin, M. A., Sumontha, M., … Pauwels, O. S. G. (2012). A phylogeny and taxonomy of the Thai-Malay Peninsula Bent-toed Geckos of the Cyrtodactylus pulchellus complex (Squamata: Gekkonidae): combined morphological and molecular analyses with descriptions of seven new species, 3520, 1–55.
Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G., & Siepel, A. (2011). Bayesian inference of ancient human demography from individual genome sequences. Nature Genetics, 43(10), 1031–1035. doi:10.1038/ng.937
Harvey, M. G., Judy, C. D., Seeholzer, G. F., Maley, J. M., Graves, G. R., & Brumfield, R. T. (2015). Similarity thresholds used in DNA sequence assembly from short reads can reduce the comparability of population histories across species. PeerJ, 3, e895. doi:10.7717/peerj.895
Heinicke, M. P., Jackman, T. R., & Bauer, A. M. (2017). The measure of success: geographic isolation promotes diversification in Pachydactylus geckos. BMC Evolutionary Biology, 17(1), 9. doi:10.1186/s12862-016-0846-2
Herrera, S., Reyes-Herrera, P. H., & Shank, T. M. (2015). Predicting RAD-seq marker numbers across the eukaryotic tree of life. Genome Biology and Evolution, 7(12), 3207–3225. doi:10.1093/gbe/evv210
Hijmans, R. J. (2017). Geosphere: Spherical Trigonometry. Retrieved from https://cran.r-project.org/package=geosphere
Hilde, T. W. C., & Engel, C. G. (1967). Age, composition, and tectonic setting of the granite island, Hon Trung Lon, off the coast of South Vietnam. Bulletin of the Geological Society of America, 78(10), 1289–1294. doi:10.1130/0016-7606(1967)78[1289:ACATSO]2.0.CO;2
Hoehn, M., Sarre, S. D., & Henle, K. (2007). The tales of two geckos: Does dispersal prevent extinction in recently fragmented populations? Molecular Ecology, 16(16), 3299–3312. doi:10.1111/j.1365-294X.2007.03352.x
Hung, C.-M., Drovetski, S. V., & Zink, R. M. (2017). The roles of ecology, behaviour and effective population size in the evolution of a community. Molecular Ecology, 26(14), 3775–3784. doi:10.1111/mec.14152
Hutchinson, G. E. (1959). Homage to Santa Rosalia or why there are so many kinds of animals? The American Naturalist, 93, 145–159.
Hutchison, C. S. (1989). Geological evolution of South-east Asia. California: Clarendon Press.
Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23(14), 1801–1806. doi:10.1093/bioinformatics/btm233
Kamath, A., & Losos, J. B. (2017). Does ecological specialization transcend scale? Habitat partitioning among individuals and species of Anolis lizards. Evolution, 71(3), 541–549. doi:10.1111/evo.13158
Kelley, S. T., & Farrell, B. D. (1998). Is specialization a dead end? The phylogeny of host use in Dendroctonus bark beetles (Scolytidae). Evolution, 52(6), 1731–1743. doi:Doi 10.2307/2411346
Kiernan, K. (2010). Human Impacts on Geodiversity and Associated Natural Values of Bedrock Hills in the Mekong Delta. Geoheritage, 2(3), 101–122. doi:10.1007/s12371-010-0015-8
Kiernan, K. (2011). Monadnocks of the mekong delta: Character, caves and evolution. Cave and Karst Science, 38(2), 71–80.
Kozak, K. H., & Wiens, J. (2006). Does niche conservatism promote speciation? A case study in North American salamanders. Evolution, 60(12), 2604–2621. doi:10.1554/06-334.1
Kuhner, M. K. (2008). Coalescent genealogy samplers: windows into population history. Trends in Ecology & Evolution, 24(2), 86–93. doi:10.1016/j.tree.2008.09.007
Kurita, T., Nishikawa, K., Matsui, M., & Hikida, T. (2017). A new species of Rock Gecko genus Cnemaspis (Squamata: Gekkonidae) from Western Sarawak, Malaysia. Zootaxa, 4258(6), 525–538. doi:10.11646/zootaxa.4258.6.2
Leaché, A. D., Banbury, B. L., Felsenstein, J., De Oca, A. N. M., & Stamatakis, A. (2015). Short tree, long tree, right tree, wrong tree: New acquisition bias corrections for inferring SNP phylogenies. Systematic Biology, 64(6), 1032–1047. doi:10.1093/sysbio/syv053
Leaché, A. D., Harris, R. B., Rannala, B., & Yang, Z. (2014). The Influence of Gene Flow on Species Tree Estimation: A Simulation Study. Systematic Biology, 63(1), 17–30. doi:10.1093/sysbio/syt049
Leclair, R. J. (1978). Water loss and microhabitat in three sympatric species of lizards (Reptilia, Lacertilia) from Martinique, West Indie. Journal of Herpetology, 12(2), 177–182.
Lee, Y.-H., & Lin, C.-P. (2012). Pleistocene speciation with and without gene flow in Euphaea damselflies of subtropical and tropical East Asian islands. Molecular Ecology, 21(15), 3739–3756. doi:10.1111/j.1365-294X.2012.05654.x
Li, S., Jovelin, R., Yoshiga, T., Tanaka, R., & Cutter, A. D. (2014). Specialist versus generalist life histories and nucleotide diversity in Caenorhabditis nematodes. Proceeding of the Royal Society, 281. doi:http://dx.doi.org/10.1098/rspb.2013.2858
Librado, P., & Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451–1452. doi:10.1093/bioinformatics/btp187
Liu, Z., Colin, C., Huang, W., Phon Le, K., Tong, S., Chen, Z., & Trentesaux, A. (2007). Climatic and tectonic controls on weathering in south China and Indochina Peninsula: Clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins. Geochemistry, Geophysics, Geosystems, 8(5), 1–18. doi:10.1029/2006GC001490
Louy, D., Habel, J. C., Schmitt, T., Assmann, T., Meyer, M., & Müller, P. (2007). Strongly diverging population genetic patterns of three skipper species: The role of habitat fragmentation and dispersal ability. Conservation Genetics, 8(3), 671–681. doi:10.1007/s10592-006-9213-y
Luikart, G., England, P. R., Tallmon, D., Jordan, S., & Taberlet, P. (2003). The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet, 4(12), 981–994.
Luiselli, L. (2008). Community ecology of African reptiles: Historical perspective and a meta-analysis using null models. African Journal of Ecology, 46(3), 384–394. doi:10.1111/j.1365-2028.2007.00870.x
Lukoschek, V., Waycott, M., & Marsh, H. (2007). Phylogeography of the olive sea snake, Aipysurus laevis (Hydrophiinae) indicates Pleistocene range expansion around northern Australia but low contemporary gene flow. Molecular Ecology, 16(16), 3406–3422. doi:10.1111/j.1365-294X.2007.03392.x
Macey, J. R., Schulte, J. A., Larson, A., Tuniyev, B. S., Orlov, N., Papenfuss, T. J., … Papenfuss, T. J. (1999). Molecular phylogenetics, tRNA evolution, and historical biogeography in anguid lizards and related taxonomic families. Molecular Phylogenetics and Evolution, 12(3), 250–272. doi:http://dx.doi.org/10.1006/mpev.1999.0615
Mastretta-Yanes, A., Arrigo, N., Alvarez, N., Jorgensen, T. H., Piñero, D., Emerson, B. C., … Emerson, B. C. (2015). Restriction site-associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference. Molecular Ecology Resources, 15(1), 28–41. doi:10.1111/1755-0998.12291
Mayr, E. (1963). Animal species and evolution. Cambridge, Mass: Harvard University Press. doi:10.1016/j.compag.2011.07.002
McCauley, D. J., Hoffmann, E., Young, H. S., & Micheli, F. (2012). Night shift: Expansion of temporal niche use following reductions in predator density. PLoS ONE, 7(6). doi:10.1371/journal.pone.0038871
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., … DePristo, M. A. (2010). The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9), 254–260. doi:10.1101/gr.107524.110.20
Measey, G. J., & Tolley, K. A. (2011). Sequential fragmentation of Pleistocene forests in an East Africa biodiversity hotspot: Chameleons as a model to track forest history. PLoS ONE, 6(10). doi:10.1371/journal.pone.0026606
Métivier, F., Gaudemer, Y., Tapponnier, P., & Klein, M. (1999). Mass accumulation rates in Asia during the Cenozoic. Geophysical Journal International, 137(2), 280–318. doi:10.1046/j.1365-246X.1999.00802.x
Murdoch, M. L., Grismer, L. L., Wood, P. J. L., Neang, T., Poyarkov, N. A., Ngo, V. T., … Grismer, J. L. (2019). Six new species of the Cyrtodactylus intermedius complex (Squamata: Gekkonidae) from the Cardamom Mountains and associated highlands of Southeast Asia. Zootaxa, 4554(1), 1–62. doi:10.11646/zootaxa.4554.1.1
Nadachowska-Brzyska, K., Burri, R., Olason, P. I., Kawakami, T., Smeds, L., & Ellegren, H. (2013). Demographic divergence history of pied flycatcher and collared flycatcher inferred from whole-genome re-sequencing Data. PLoS Genet, 9(11), e1003942. doi:10.1371/journal.pgen.1003942
Nava, S. S., Conway, M. A., & Martins, E. P. (2009). Divergence of visual motion detection in diurnal geckos that inhabit bright and dark habitats. Functional Ecology, 23(4), 794–799. doi:10.1111/j.1365-2435.2009.01565.x
Ngo, H. N., Nguyen, T. Q., Nguyen, T. Van, van Schingen, M., & Ziegler, T. (2018). Microhabitat selection and communal nesting in the insular Psychedelic Rock Gecko, Cnemaspis psychedelica, in Southern Vietnam with updated information on trade. Nature Conservation, 31, 1–16. doi:10.3897/natureconservation.31.28145
Nguyen, H. N., Lu, C.-W., Chu, J.-H., Grismer, L. L., Hung, C.-M., & Lin, S.-M. (2019). Historical demography of four gecko species specializing in boulder cave habitat - its implications in the evolutionary dead end hypothesis and conservation. Molecular Ecology, 00, 1–13. doi:10.1111/mec.14985
Nguyen, N. S. (2010). A new poreless species of Gekko Laurenti, 1768 (Gekkonidae: Squamata) from An Giang Province, southern Vietnam. Zootaxa, 2501, 54–60.
Nguyen, V. L., Ta, T. K. O., & Tateishi, M. (2000). Late Holocene depositional environments and coastal evolution of the Mekong River Delta, Southern Vietnam. Journal of Asian Earth Sciences, 18(4), 427–439. doi:http://dx.doi.org/10.1016/S1367-9120(99)00076-0
Niemiller, M. L., Graening, G. O., Fenolio, D. B., Godwin, J. C., Cooley, J. R., Pearson, W. D., … Near, T. J. (2013). Doomed before they are described? The need for conservation assessments of cryptic species complexes using an amblyopsid cavefish (Amblyopsidae: Typhlichthys) as a case study. Biodiversity and Conservation, 22(8), 1799–1820. doi:10.1007/s10531-013-0514-4
Öckinger, E., Schweiger, O., Crist, T. O., Debinski, D. M., Krauss, J., Kuussaari, M., … Bommarco, R. (2010). Life-history traits predict species responses to habitat area and isolation: A cross-continental synthesis. Ecology Letters, 13(8), 969–979. doi:10.1111/j.1461-0248.2010.01487.x
Orme, C. D. L., Freckleton, R. P., Thomas, G. H., Petzold, T., & Fritz, S. A. (2011). caper: comparative analyses of phylogenetics and evolution in R. Retrieved from http://r-forge.r-project.org/projects/caper/
Pagel, M., Meade, A., & Barker, D. (2004). Bayesian estimation of ancestral character states on phylogenies. Systematic Biology, 53(5), 673–684. doi:10.1080/10635150490522232
Pante, E., Abdelkrim, J., Viricel, A., Gey, D., France, S. C., Boisselier, M. C., & Samadi, S. (2015). Use of RAD sequencing for delimiting species. Heredity, 114(5), 450–459. doi:10.1038/hdy.2014.105
Paradis, E., & Schliep, K. (2018). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526–528.
Paris, J. R., Stevens, J. R., & Catchen, J. M. (2017). Lost in parameter space: a road map for stacks. Methods in Ecology and Evolution, 8(10), 1360–1373. doi:10.1111/2041-210X.12775
Parra-Olea, G., Windfield, J. C., Velo-Antón, G., & Zamudio, K. R. (2012). Isolation in habitat refugia promotes rapid diversification in a montane tropical salamander. Journal of Biogeography, 39(2), 353–370. doi:10.1111/j.1365-2699.2011.02593.x
Phung, T. M., Schingen, M. Van, Ziegler, T., & Nguyen, T. Q. (2014). A third new Cyrtodactylus (Squamata: Gekkonidae) from Ba Den Mountain Tay Ninh Province, southern Vietnam. Zootaxa, 3764(3), 347–363. doi:10.11646/zootaxa
Poland, J. A., & Rife, T. W. (2012). Genotyping-by-Sequencing for Plant Breeding and Genetics. The Plant Genome, 5(3). doi:10.3835/plantgenome2012.05.0005
Porembski, S., & Barthlott, W. (Eds.). (2000). Inselbergs : biotic diversity of isolated rock outcrops in tropical and temperate regions. Berlin: Springer Berlin Heidelberg. doi:10.1007/978-3-642-59773-2
Porembski, S., Seine, R., & Barthlott, W. (1997). Inselberg vegetation and the biodiversity of granite outcrops. Journal of the Royal Society of Western Australia, 80(3), 193–199.
Prado, C. P. A., Haddad, C. F. B., & Zamudio, K. R. (2012). Cryptic lineages and Pleistocene population expansion in a Brazilian Cerrado frog. Molecular Ecology, 21(4), 921–941. doi:10.1111/j.1365-294X.2011.05409.x
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155(2), 945–959.
Puritz, J. B., Hollenbeck, C. M., & Gold, J. R. (2014). dDocent : a RADseq, variant-calling pipeline designed for population genomics of non-model organisms . PeerJ, 2, e431. doi:10.7717/peerj.431
Pyron, R. A., Costa, G. C., Patten, M. A., & Burbrink, F. T. (2015). Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biological Reviews, 90, 1248–1262. doi:10.1111/brv.12154
R Core Team. (2018). R: A Language and Environment for Statistical Computing. Vienna, Austria. Retrieved from https://www.r-project.org/
Rambaut, A., Suchard, M. A., Xie, D., & Drummond, A. J. (2014). Tracer v1.6. Retrieved from http://beast.bio.ed.ac.uk/Tracer
Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223. doi:doi:10.1111/j.2041-210X.2011.00169.x
Rochette, N. C., & Catchen, J. M. (2017). Deriving genotypes from RAD-seq short-read data using Stacks. Nature Protocols, 12(12), 2640–2659. doi:10.1038/nprot.2017.123
Romiguier, J., Gayral, P., Ballenghien, M., Bernard, A., Cahais, V., Chenuil, A., … Galtier, N. (2014). Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature, 515(7526), 261–263. doi:10.1038/nature13685 http://www.nature.com/nature/journal/v515/n7526/abs/nature13685.html#supplementary-information
Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572–1574. doi:10.1093/bioinformatics/btg180
Rooney, T. P., Wiegmann, S. M., Rogers, D. A., & Waller, D. M. (2004). Biotic impoverishment and homogenization in unfragmented forest understory communities. Conservation Biology, 18(3), 787–798. doi:10.1111/j.1523-1739.2004.00515.x
Rosenberg, N. A. (2004). Distruct: a program for the graphical display of population structure. Molecular Ecology Notes, 4(1), 137–138. doi:10.1046/j.1471-8286.2003.00566.x
Rouag, R., Djilali, H., Gueraiche, H., & Luiselli, L. (2007). Resource partitioning patterns between two sympatric lizard species from Algeria. Journal of Arid Environments, 69(1), 158–168. doi:10.1016/j.jaridenv.2006.08.008
RStudio Team. (2016). RStudio: Integrated Development Environment for R. Boston, MA. Retrieved from http://www.rstudio.com/
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9, 676. Retrieved from https://doi.org/10.1038/nmeth.2019
Shafer, A. B. A., Peart, C. R., Tusso, S., Maayan, I., Brelsford, A., Wheat, C. W., & Wolf, J. B. W. (2017). Bioinformatic processing of RAD-seq data dramatically impacts downstream population genetic inference. Methods in Ecology and Evolution, 8(8), 907–917. doi:10.1111/2041-210X.12700
Shea, G., Couper, P., Wilmer, J. W., & Amey, A. (2011). Revision of the genus Cyrtodactylus Gray, 1827 (Squamata: Gekkonidae) in Australia. Zootaxa (Vol. 63).
Siler, C. D., Oaks, J. R., Welton, L. J., Linkem, C. W., Swab, J. C., Diesmos, A. C., & Brown, R. M. (2012). Did geckos ride the Palawan raft to the Philippines? Journal of Biogeography, 39(7), 1217–1234. doi:10.1111/j.1365-2699.2011.02680.x
Snyder, G. K., & Weathers, W. W. (1976). Physiological responses to temperature in the tropical lizard, Hemidactylus frenatus (Sauria: Gekkonidae). Herpetologica, 32(3), 252–256.
Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. doi:10.1093/bioinformatics/btu033
Stern, D. B., Breinholt, J., Pedraza-Lara, C., López-Mejía, M., Owen, C. L., Bracken-Grissom, H., … Crandall, K. A. (2017). Phylogenetic evidence from freshwater crayfishes that cave adaptation is not an evolutionary dead-end. Evolution, 71(10), 2522–2532. doi:10.1111/evo.13326
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729. doi:10.1093/molbev/mst197
Tamura, T., Saito, Y., Sieng, S., Ben, B., Kong, M., Sim, I., … Akiba, F. (2009). Initiation of the Mekong River delta at 8 ka: evidence from the sedimentary succession in the Cambodian lowland. Quaternary Science Reviews, 28(3–4), 327–344. doi:http://dx.doi.org/10.1016/j.quascirev.2008.10.010
Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC308517/
Tran, N. N. (1995). The geology of Vietnam: a brief summary and problems. Geosci. Repts. Shizuoka Univ., 1–10. doi:10.14945/00000334
Tripp, E. A., & Manos, P. S. (2008). Is floral specialization an evolutionary dead-end? Pollination system transitions in Ruellia (Acanthaceae). Evolution, 62(7), 1712–1737. doi:10.1111/j.1558-5646.2008.00398.x
Trucchi, E., Gratton, P., Whittington, J. D., Cristofari, R., Maho, Y. Le, Stenseth, N. C., … Le Bohec, C. (2014). King penguin demography since the last glaciation inferred from genome-wide data. Proceedings of the Royal Society of London B: Biological Sciences, 281(1787). doi:10.1098/rspb.2014.0528
Trucchi, E., & Robin Cristofari. (2014). Extended Bayesian Skyline Plot using highly variable RADseq loci, (2008).
Tuck, S. L., Phillips, H. R. P., Hintzen, R. E., Scharlemann, J. P. W., Purvis, A., & Hudson, L. N. (2014). MODISTools - downloading and processing MODIS remotely sensed data in R. Ecology and Evolution, 4(24), 4658–4668. doi:10.1002/ece3.1273
Twidale, C. R., & Romani, J. R. (2005). Landforms and Geology of Granite Terrains. London: A.A. Balkema Publishers. doi:10.1201/9781439833704
Uetz, P. (2019). The Reptile Database. Retrieved January 20, 2019, from http://reptile-database.reptarium.cz
Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S (Fourth). New York: Springer. Retrieved from http://www.stats.ox.ac.uk/pub/MASS4
Vidan, E., Roll, U., Bauer, A., Grismer, L., Guo, P., Maza, E., … Meiri, S. (2017). The Eurasian hot nightlife: Environmental forces associated with nocturnality in lizards. Global Ecology and Biogeography, 26(11), 1316–1325. doi:10.1111/geb.12643
Vitt, L. J., Pianka, E. R., Cooper, W. E. J., & Schwenk, K. (2003). History and the Global Ecology of Squamate Reptiles. The American Naturalist, 162(1), 44–60. doi:10.1086/375172
Wan, Z., Hook, S., & Hulley, G. (2015). MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. doi:doi: 10.5067/MODIS/MOD11A2.006
Werner, Y. L. (1969). Eye size in geckos of various ecological types (Reptilia: Gekkonidae and Sphaerodactylidae). Israel Journal of Zoology, 18(2), 291–316.
Werner, Y. L., & Seifan, T. (2006). Eye size in geckos: Asymmetry, allometry, sexual dimorphism, and behavioral correlates. Journal of Morphology, 267(12), 1486–1500. doi:10.1002/jmor.10499
Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., … Grytnes, J.-A. A. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13(10), 1310–1324. doi:10.1111/j.1461-0248.2010.01515.x
Wiens, J. J., & Graham, C. H. (2005). Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics, 36(1), 519–539. doi:10.2307/30033815
Williams, R., Pernetta, A. P., & Horrocks, J. A. (2016). Outcompeted by an invader? Interference and exploitative competition between tropical house gecko (Hemidactylus mabouia) and Barbados leaf-toed gecko (Phyllodactylus pulcher) for diurnal refuges in anthropogenic coastal habitats. Integrative Zoology, 11(3), 229–238. doi:10.1111/1749-4877.12194
Wollenberg, K. C., Wang, I. J., Glor, R. E., & Losos, J. B. (2013). Determinism in the diversification of Hispaniolan trunk-ground Anoles (Anolis cybotes species complex). Evolution, 67(11), 3175–3190. doi:10.1111/evo.12184
Wood Jr, P. L., Grismer, L. L., Aowphol, A., Aguilar, C. A., Cota, M., Grismer, M. S., … Jr, J. W. S. (2017). Three new karst-dwelling Cnemaspis Strauch, 1887 (Squamata; Gekkoniade) from Peninsular Thailand and the phylogenetic placement of C. punctatonuchalis and C. vandeventeri. PeerJ, 5, e2884. doi:10.7717/peerj.2884
Wood, P. L., Heinicke, M. P., Jackman, T. R., & Bauer, A. M. (2012). Phylogeny of bent-toed geckos (Cyrtodactylus) reveals a west to east pattern of diversification. Molecular Phylogenetics and Evolution, 65(3), 992–1003. doi:10.1016/j.ympev.2012.08.025
Wood, P. L., Quah, E. S. H., Anuar, S., & Muin, M. A. (2013). A new species of lowland karst dwelling Cnemaspis strauch 1887 (Squamata: Gekkonidae) from northwestern Peninsular Malaysia. Zootaxa, 3691(5), 538–558. doi:10.11646/zootaxa.3691.5.2
Woodruff, D. S. (2010). Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity. Biodiversity and Conservation, 19(4), 919–941. doi:10.1007/s10531-010-9783-3
Zhong, G., Geng, J., Wong, H. K., Ma, Z., & Wu, N. (2004). A semi-quantitative method for the reconstruction of eustatic sea level history from seismic profiles and its application to the southern South China Sea. Earth and Planetary Science Letters, 223(3–4), 443–459. doi:http://dx.doi.org/10.1016/j.epsl.2004.04.039
Zink, R. M. (2014). Homage to Hutchinson, and the role of ecology in lineage divergence and speciation. Journal of Biogeography, 41(5), 999–1006. doi:10.1111/jbi.12252