簡易檢索 / 詳目顯示

研究生: 張宸睿
Chang, Chen-Jui
論文名稱: 四黃斑蛾之生活史與其切葉行為研究
The immature biology and leaf-cutting behaviors of Artona flavipuncta Hampson 1900 (Lepidoptera: Zygaenidae).
指導教授: 徐堉峰
Hsu, Yu-Feng
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 52
中文關鍵詞: 四黃斑蛾臺灣稀有蛾類薑科植物切葉行為蟲巢
英文關鍵詞: Artona flavipuncta, rare moth species in Taiwan, Zingiberaceae, leaf-cutting behavior, shelter
DOI URL: http://doi.org/10.6345/THE.NTNU.SLS.020.2018.D01
論文種類: 學術論文
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 四黃斑蛾Artona flavipuncta Hampson 1900在臺灣被視為稀有種的蛾類,因此本種的相關資訊如生活史及生態方面的資料也相當不足。根據調查,本種幼蟲的數量實際上不少,孵化後的小齡幼蟲會群聚刮食葉片。另外,幼蟲有一切葉的特殊行為,葉片主脈被切斷後因水分阻斷而乾枯捲曲,幼蟲則會利用這種乾枯葉片做為躲藏的棲所。本研究探討三個部分:(1) 四黃斑蛾之生活史、 (2)四黃斑蛾族群概況與其利用寄主植物的行為、(3)切葉行為與其他物種的影響關係。結果顯示四黃斑蛾完整的生活史需要花費74±3天,幼蟲取食多種薑科Zingiberaceae植物。而本種幼蟲發現可以取食萎凋的葉片,而其切葉行為可能導致同樣取食薑科植物的鱗翅目物種出現競爭關係。2015至2017年間的觀察也發現薑科植物上的物種族群數量會受本種影響。而導致四黃斑蛾成為稀有種的原因可能來自於面臨較高的寄生性天敵壓力。另一方面,切葉之後所形成的蟲巢成為其他生物的棲所,四黃斑蛾的行為也增加了棲地環境的多樣性,因此在薑科植物群落中可能扮演著一個重要的角色。

    Artona flavipuncta Hampson 1900 is currently considered as a rare moth species in Taiwan. The information on immature biology and host plants of this moth is largely lacking. According to observation, however, larvae of the moth are quite actually abundant. Young larvae are gregarious and scratching leaf surfaces. They also exhibit a special behavior by cutting leaves and make them curl up into shelter and dried up. Then we are interesting about the behaviors of the larvae. In this study, I focus on three aims: (1) The life history of A. flavipuncta; (2) The population profile and the behavior of using host plants of the species; (3) The impact of the leaf-cutting behavior of Artona to other species feeding on the same host plants. The results show that the complete life cycle of the species may cost about 74±3 days. Larvae feed on several Zingiberaceae plants. The leaf-cutting behavior exhibits at the fourth instar larva, and it may result in interspecific competition because Artona larvae could feed on dried leaves but other lepidopetran species may not. On the other hand, the results show that Artona population impact on number of other species feed on Zingiberaceae from 2015 to 2017. And the reason which causes the moth species to become rare may be due to high ratio of parasitism. On the other hand, leaf shelter also provides other arthropods with hiding places which cause more habitat diversity. According to the results, A.flavipuncta may play an important role of Zingiberaceae communities.

    中文摘要 1 Abstracts 2 一、 文獻探討 4 二、 研究目標 10 三、 研究材料與方法 10 四、 結果 13 五、 討論 25 六、 結論 31 七、 參考文獻 32 八、 附圖 36 九、 附表 47

    一、英文文獻
    Abràmoff, M.D., Magalhães, P.J. & Ram, S.J. (2004) Image processing with ImageJ. Biophotonics international, 11, 36-42.
    Agrawal, A.A. & Weber, M.G. (2015) On the study of plant defence and herbivory using comparative approaches: how important are secondary plant compounds. Ecology Letters, 18, 985-991.
    Aguirre, N.M., Ochoa, M.E., Holmlund, H.I., Ewers, F.E. & Davis, S.D. (2017) Hydraulic Mechanisms of Fungal-Induced Dieback in a Keystone Chaparral Species during Unprecedented Drought in California.
    Beccaloni, G.W. & Gaston, K.J. (1995) Predicting the species richness of neotropical forest butterflies: Ithomiinae (Lepidoptera: Nymphalidae) as indicators. Biological Conservation, 71, 77-86.
    Byun, B.-K., Lee, B.-W., Kim, I.-K., Kim, J., Park, I.-K. & Shin, S.-C. (2010) A first discovery of Artona martini Efetov (Lepidoptera: Zygaenidae) from Korea. Journal of Asia-Pacific Entomology, 13, 391-393.
    Caro, T. (2010) Conservation by proxy: indicator, umbrella, keystone, flagship, and other surrogate species. Island Press.
    Castilla, J. (1985) Food webs and functional aspects of the kelp, Macrocystis pyrifera, community in the Beagle Channel, Chile. Antarctic nutrient cycles and food webs, pp. 407-414. Springer.
    Chen, Y.-F., Huang, C.-L. & Hsu, Y.-F. (2017) DNA barcoding and morphological data reveal a new Hyposoter (Hymenoptera: Ichneumonidae: Porizontinae) reared from a rare zygaenid moth Artona flavipuncta Hampson, 1900 in Taiwan. Zootaxa, 4337, 279-287.
    Cody, J.B., Knight, F.B. & Graham, S.A. (2017) The hymenopterous parasites Agathis pumila (Braconidae) and Epilampsis laricinellae (Eulophidae) on the larch casebearer (Lepidoptera: Coleophoridae) in the northern lake states. The Great Lakes Entomologist, 1, 3.
    Common, I.F.B. (2000) Oecophorine Genera of Australia III: the Barea Group and Unplaced Genera (Lepidoptera: Oecophoridae). CSIRO PUBLISHING.
    Dickson, L.L. & Whitham, T.G. (1996) Genetically-based plant resistance traits affect arthropods, fungi, and birds. Oecologia, 106, 400-406.
    Fänger, H. & Naumann, C.M. (2001) The morphology of the last instar larva of Aglaope infausta (Lepidoptera: Zygaenidae: Chalcosiinae). Eur. J. Entomol, 98, 201-218.
    Foottit, R.G. & Adler, P.H. (2009) Insect biodiversity: science and society. John Wiley & Sons.
    Fukui, A. (2001) Indirect interactions mediated by leaf shelters in animal–plant communities. Population Ecology, 43, 31-40.
    GASTON, K.J., REAVEY, D. & VALLADARES, G.R. (1991) Changes in feeding habit as caterpillars grow. Ecological Entomology, 16, 339-344.
    Gill, G. (2000) A first record of Artona (Balataea) martini (Lepidoptera: Zygaenidae) for New Zealand. New Zealand Entomologist, 23, 33-35.
    Hammond, P.C. & Miller, J.C. (1998) Comparison of the biodiversity of Lepidoptera within three forested ecosystems. Annals of the Entomological Society of America, 91, 323-328.
    Hampson, S.G.F. (1912) The Moths of India: Supplementary Paper to the Volumes in" The Fauna of British India".
    Hayes, L. (2012) WHAT'S NEW IN BIOLOGICAL CONTROL OF WEEDS?, ISSUE 61.
    Holt, R.D. (1984) Spatial heterogeneity, indirect interactions, and the coexistence of prey species. The American Naturalist, 124, 377-406.
    Jones, C.G., Lawton, J.H. & Shachak, M. (1994) Organisms as ecosystem engineers. Ecosystem management, pp. 130-147. Springer.
    Jones, C.G., Lawton, J.H. & Shachak, M. (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology, 78, 1946-1957.
    Kazanci, N. & Ertunc, O. (2010) Use of Simuliidae (Insecta, Diptera) species as indicators of aquatic habitat quality of Yeşilırmak River Basin (Turkey). Review of hydrobiology, 3, 27-36.
    Larsson, S., HÄGGSTRÖM, H. & DENNO, R. (1997) Preference for protected feeding sites by larvae of the willow‐feeding leaf beetle Galerucella lineola. Ecological Entomology, 22, 445-452.
    Lyons, K.G., Brigham, C., Traut, B. & Schwartz, M.W. (2005) Rare species and ecosystem functioning. Conservation biology, 19, 1019-1024.
    Miller, J.C. (1993) Insect natural history, multi-species interactions and biodiversity in ecosystems. Biodiversity and Conservation, 2, 233-241.
    Mills, L.S., Soulé, M.E. & Doak, D.F. (1993) The keystone-species concept in ecology and conservation. BioScience, 43, 219-224.
    New, T. (1997) Are Lepidoptera an effective ‘umbrella group ‘for biodiversity conservation? Journal of Insect Conservation, 1, 5-12.
    Nothnagle, P.J., and Schultz, J. C. (1987) What is a forest pest? , 59-80.
    Noy-Meir, I. (1981) Theoretical dynamics of competitors under predation. Oecologia, 50, 277-284.
    Paine, R. (1974) Intertidal community structure. Oecologia, 15, 93-120.
    Paine, R.T. (1969) A note on trophic complexity and community stability. The American Naturalist, 103, 91-93.
    Power, M.E. & Mills, L.S. (1995) The keystone cops meet in Hilo. Trends in Ecology & Evolution, 10, 182-184.
    Rabinowitz, D., Rapp, J.K., Cairns, S. & Mayer, M. (1989) The persistence of rare prairie grasses in Missouri: environmental variation buffered by reproductive output of sparse species. The American Naturalist, 134, 525-544.
    Risch, S.J. & Carroll, C.R. (1982) Effect of a keystone predaceous ant, Solenopsis geminata, on arthropods in a tropical agroecosystem. Ecology, 1979-1983.
    Sagers, C. (1992) Manipulation of host plant quality: herbivores keep leaves in the dark. Functional Ecology, 741-743.
    Sergio, F., Newton, I., Marchesi, L. & Pedrini, P. (2006) Ecologically justified charisma: preservation of top predators delivers biodiversity conservation. Journal of Applied Ecology, 43, 1049-1055.
    Stamp, N.E. (1980) Egg deposition patterns in butterflies: why do some species cluster their eggs rather than deposit them singly? The American Naturalist, 115, 367-380.
    Stamp, N.E. (1982) Behavioral Interactions of Parasitoids and Baltimore Checkerspot Caterpillars (Euphydryas phaeton). Environmental entomology, 11, 100-104.
    Stamp, N.E. (1984) Interactions of parasitoids and checkerspot caterpillars Euphydryas spp.(Nymphalidae). Journal of Research on the Lepidoptera, 23, 2-18.
    Stamp, N.E. & Casey, T.M. (1993) Caterpillars: ecological and evolutionary constraints on foraging. Chapman & Hall, New York.
    Tsubaki, Y. (1981) Some beneficial effects of aggregation in young larvae of Pryeria sinica moore (Lepidoptera: Zygaenidae). Researches on Population Ecology, 23, 156-167.
    Tsubaki, Y. & Shiotsu, Y. (1982) Group feeding as a Strategy for Exploiting Food Resources in the Burnet Moth Pryeria sinica. Oecologia, Berl, 12-20.
    Valls, A., Coll, M. & Christensen, V. (2015) Keystone species: toward an operational concept for marine biodiversity conservation. Ecological Monographs, 85, 29-47.
    Willmer, P.G. (1982) Microclimate and the environmental physiology of insects. Advances in insect physiology, pp. 1-57. Elsevier.
    Zhang, Y., Malmqvist, B. & Englund, G. (1998) Ecological processes affecting community structure of blackfly larvae in regulated and unregulated rivers: a regional study. Journal of Applied Ecology, 35, 673-686.
    二、中文文獻
    王效岳 (1995) 台灣的昆蟲12,斑蛾和其他一些天活動的蛾類. 淑馨出版社, 台北市.
    古光華 & 施禮正 (2012) 慕光之城蛾類查詢系統. Available at: http://twmoth.tesri.gov.tw/peo/FBMothQuery.aspx(accessed

    無法下載圖示 本全文未授權公開
    QR CODE