簡易檢索 / 詳目顯示

研究生: 王柏文
Wang, Po-Wen
論文名稱: 利用軌道角動量光源調控二維材料記憶體元件之研究
The Study on 2D Material Memory Transistors Controlled by Orbital Angular Momentum of Light
指導教授: 藍彥文
Lan, Yann-Wen
陸亭樺
Lu, Ting-Hua
口試委員: 藍彥文
Lan, Yann-Wen
陸亭樺
Lu, Ting-Hua
邱昱誠
Chiu, Yu-Cheng
口試日期: 2023/07/05
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 53
中文關鍵詞: 二硫化鉬記憶體光感式電晶體渦旋光軌道角動量
英文關鍵詞: MoS2, memory, phototransistor, twisted light, orbital angular momentum
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301129
論文種類: 學術論文
相關次數: 點閱:111下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二維過渡金屬二硫化物(2D TMD)材料以其出色的固有性質和巨大的電子應用潛力而聞名,尤其在記憶體應用方面更具潛力。最近的研究表明,基於二硫化鉬的元件通過將載流子儲存在功能性陷阱結構中展現出記憶特性。在這裡,我們提出了一種新的方法,通過照射具有不同軌道角動量(Orbital Angular Momentum, OAM)的渦旋光於二硫化鉬電晶體上,觀察其記憶特性。隨著拉蓋爾-高斯光束所給予的拓撲電荷(ℓ)增加,將有更多載流子從功能性陷阱結構中釋放,從而改變裝置通道中的載流子濃度。在MoS2電晶體上照射OAM光可以有效調節MoS2的電學特性,如光電流、遲滯窗口和載流子儲存性能等。在不同的光學特性條件下例如曝光時間、光強度和測量溫度,渦旋光仍然能獨立產生影響。我們對這個元件進行了記憶體特性的量測,展現出出色的耐久性和等待時間。此外,我們還觀察到不同結構的記憶體元件中,渦旋光能夠調控記憶體的現象。我們相信,透過軌道角動量光可調控的二硫化鉬記憶體元件可能為未來先進電子應用中的光學記憶體裝置提供新的操作自由度。

    Two-dimensional transition metal dichalcogenide (2D TMD) material is well known not only in its great ability of intrinsic properties but also the huge potential electronic applications with memory applications. In recent research, MoS2 based device has exhibited the memory properties by storing the carriers in functional trap structure. Here, we provide a novel procedure by illuminating twisted light with different orbital angular momentum (OAM) on the MoS2 transistors to observe their memory characteristics. With the increasing number of topological charge given by Laguerre-Gaussian beam, more carriers will be released from the functional trap structures causing the changing of carrier concentration in the device’s channel. The illumination of OAM light on the MoS2 transistors can effectively modulate MoS2’s electrical properties such as photocurrent, hysteresis window and charge storage performance. Under different optical conditions, such as exposure time, light intensity, and measurement temperature, twisted light continues to independently exert its influence. We conducted measurements of the memory characteristics of this device, demonstrating excellent durability and retention time. Additionally, we observed evidence of twisted light modulation on the memory in memory devices with different structures. We believe that the controllable 2D-TMD-based transistors by twisted light may provide a new degree of freedom to operate the optical memory devices in advanced electronic applications in the future.

    1 第一章 緒論 1 1.1 研究背景與動機 1 2 第二章 背景知識與理論 4 2.1 二維材料記憶體 4 2.1.1 二維材料記憶體的種類及運作 4 2.1.2 二維材料記憶體的特性 9 2.1.3 光感式二維材料記憶體 11 2.2 軌道角動量光 12 2.2.1 軌道角動量光特性 13 2.2.2 軌道角動量光應用 18 3 第三章 實驗儀器及架構 22 3.1 實驗架構 22 3.2 實驗樣品製備 23 3.2.1 二硫化鉬製備 24 3.2.2 氧電漿處理 25 4 第四章 結果與討論 27 4.1 樣品結構 27 4.2 樣品基本電性 28 4.3 軌道角動量光調控記憶體之電性讀取 30 4.3.1 軌道角動量光的影響 32 4.3.2 曝光時間的影響 35 4.3.3 光強度的影響 36 4.3.4 溫度的影響 36 4.4 軌道角動量光調控記憶體之記憶特性 37 4.5 其他材料光感式記憶體受軌道角動量光影響 39 4.5.1 浮動閘式記憶體 39 4.5.2 高分子材料記憶體 40 4.6 結果原理與討論 42 5 第五章 總結與未來工作 50 5.1 結論 50 5.2 未來工作 50 第六章 參考文獻 51

    1. Kadantsev, E.S. and P. Hawrylak, Electronic structure of a single MoS2 monolayer. Solid state communications, 2012. 152(10): p. 909-913.
    2. Mak, K.F., et al., Atomically thin MoS 2: a new direct-gap semiconductor. Physical review letters, 2010. 105(13): p. 136805.
    3. Simon M. Sze, Y.L., Kwok K. Ng, Physics of Semiconductor Devices. 2006.
    4. Sze, S.M., Y. Li, and K.K. Ng, Physics of semiconductor devices. 2021: John wiley & sons.
    5. Cheiwchanchamnangij, T. and W.R. Lambrecht, Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2. Physical Review B, 2012. 85(20): p. 205302.
    6. Nishi, Y. and B. Magyari-Kope, Advances in non-volatile memory and storage technology. 2019: Woodhead Publishing.
    7. Kahng, D. and S.M. Sze, A floating gate and its application to memory devices. The Bell System Technical Journal, 1967. 46(6): p. 1288-1295.
    8. Min, S., Semiconductor flash memory scaling. University of California, 2003.
    9. Lee, J., et al., Monolayer optical memory cells based on artificial trap-mediated charge storage and release. Nature Communications, 2017. 8(1): p. 14734.
    10. Najmaei, S., et al., Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry. Nano letters, 2014. 14(3): p. 1354-1361.
    11. Dolui, K., I. Rungger, and S. Sanvito, Origin of the n-type and p-type conductivity of MoS 2 monolayers on a SiO 2 substrate. Physical review B, 2013. 87(16): p. 165402.
    12. Ashkin, A., et al., Observation of a single-beam gradient force optical trap for dielectric particles. Optics letters, 1986. 11(5): p. 288-290.
    13. Allen, L., S.M. Barnett, and M.J. Padgett, Optical angular momentum. 2003: CRC press.
    14. Beth, R.A., Mechanical detection and measurement of the angular momentum of light. Physical Review, 1936. 50(2): p. 115.
    15. Allen, L., et al., Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical review A, 1992. 45(11): p. 8185.
    16. He, H., et al., Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Physical review letters, 1995. 75(5): p. 826.
    17. Hecht, E., OPTics, Global Wdition. 2016.
    18. Padgett, M., J. Courtial, and L. Allen, Light's orbital angular momentum. Physics today, 2004. 57(5): p. 35-40.
    19. Willner, A.E., et al., Orbital angular momentum of light for communications. Applied Physics Reviews, 2021. 8(4): p. 041312.
    20. Kobayashi, H., K. Nonaka, and M. Kitano, Helical mode conversion using conical reflector. Optics express, 2012. 20(13): p. 14064-14074.
    21. Carpentier, A.V., et al., Making optical vortices with computer-generated holograms. American Journal of Physics, 2008. 76(10): p. 916-921.
    22. Ma, J., P. Li, and Y. Gu. Characteristics of spiral patterns formed by coaxial interference between two vortex beams with different radii of wavefront curvatures. in Photonics. 2021. MDPI.
    23. Yao, A.M. and M.J. Padgett, Orbital angular momentum: origins, behavior and applications. Advances in optics and photonics, 2011. 3(2): p. 161-204.
    24. Longman, A. and R. Fedosejevs, Optimal Laguerre–Gaussian modes for high-intensity optical vortices. JOSA A, 2020. 37(5): p. 841-848.
    25. Plick, W.N. and M. Krenn, Physical meaning of the radial index of Laguerre-Gauss beams. Physical Review A, 2015. 92(6): p. 063841.
    26. Ashkin, A., J.M. Dziedzic, and T. Yamane, Optical trapping and manipulation of single cells using infrared laser beams. Nature, 1987. 330(6150): p. 769-771.
    27. d'Helon, C., et al., Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres. Journal of Modern Optics, 1994. 41(3): p. 595-601.
    28. Padgett, M. and R. Bowman, Tweezers with a twist. Nature photonics, 2011. 5(6): p. 343-348.
    29. Simpson, N., et al., Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Optics letters, 1997. 22(1): p. 52-54.
    30. O'neil, A., et al., Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Physical review letters, 2002. 88(5): p. 053601.
    31. Gibson, G., et al., Free-space information transfer using light beams carrying orbital angular momentum. Optics express, 2004. 12(22): p. 5448-5456.
    32. Huang, H., et al., 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Optics letters, 2014. 39(2): p. 197-200.
    33. Krenn, M., et al., Communication with spatially modulated light through turbulent air across Vienna. New Journal of Physics, 2014. 16(11): p. 113028.
    34. Ji, Q., et al., Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline. Chemical Society Reviews, 2015. 44(9): p. 2587-2602.
    35. Late, D.J., et al., Hysteresis in single-layer MoS2 field effect transistors. ACS nano, 2012. 6(6): p. 5635-5641.
    36. Furchi, M.M., et al., Mechanisms of photoconductivity in atomically thin MoS2. Nano letters, 2014. 14(11): p. 6165-6170.
    37. Green, D. and K.A. Forbes, Optical chirality of vortex beams at the nanoscale. Nanoscale, 2023. 15(2): p. 540-552.

    下載圖示
    QR CODE