簡易檢索 / 詳目顯示

研究生: 陳又綺
Chen, You-Ci
論文名稱: 量產型石墨烯作為紫外光發光二極體透明電流擴散層
Mass-produced Transparent Conductive Graphene Electrodes for UVC LED
指導教授: 胡淑芬
Hu, Shu-Fen
口試委員: 魏大華
Wei, Da Hua
陸健榮
Lu, Chien-Rong
胡淑芬
Hu, Shu-Fen
口試日期: 2022/07/06
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 72
中文關鍵詞: 石墨烯透明電流擴散層氮化鎵歐姆接觸功函數
英文關鍵詞: Graphene, Transparent Conducting Electrodes, GaN, Ohmic Contacts
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200951
論文種類: 學術論文
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以鎳金屬為催化劑,以電漿輔助式化學氣相沉積(Plasma-enhanced Chemical Vapor Deposition;PECVD)於基板上生長石墨烯薄膜作為透明電流擴散層。為於目標基板與石墨烯透明電流擴散層之間形成類歐姆接觸,本研究使用原子層化學氣相沉積(ALCVD)於目標氮化鎵基板表面沉積氧化鎳薄膜作為緩衝層,並對兩者進行熱退火合金化,以降低功函數差異造成之能障,藉優化參數實現低接觸電阻、高 UV 穿透之透明電流擴散層。
    以圓形傳輸線量測(CTLM),檢視各製程參數對石墨烯透明電流擴散層與紫外光發光二極體表層之 p 型氮化鎵介面特性之影響。最終藉加入氧化鎳緩衝層,使介面間自蕭特基接觸轉為類歐姆接觸。達成具低特徵接觸電阻與類歐姆接觸之介面特性之大面積高品質石墨烯作為紫外光發光二極體透明電流擴散層之應用。

    In this research, nickel metal was used as a catalyst, and plasma-enhanced chemical vapor deposition (Plasma-enhanced Chemical Vapor Deposition; PECVD)was used to grow a graphene film on the target substrate as a transparent current diffusion layer. In order to form an ohmic contact between the target substrate and the graphene transparent current diffusion layer, we use Atomic Layer Chemical Vapor Deposition (ALCVD) to deposit a nickel oxide film on the surface of the target gallium nitride substrate as a buffer layer, and perform thermal annealing to alloy the two to reduce the energy barrier caused by the difference in work function, and achieve a transparent current diffusion layer with low contact resistance and high UV penetration by optimizing parameters.
    Using CTLM to examine the effect of various process parameters on the properties of the graphene-GaN interface. Interface characteristics changed from Schottky contact to Ohmic contact. Achieving the application of large-area high-quality graphene with low characteristic contact resistance and ohmic contact characteristics as a transparent current diffusion layer for ultraviolet light-emitting diodes.

    第一章 緒論 1 1.1 研究動機 1 1.2 發光二極體 2 1.2.1 發光二極體發光原理 2 1.2.2 發光二極體基本結構 3 1.2.3 藍光發光二極體 4 1.2.4 紫外光發光二極體 5 1.3 透明電流擴散薄膜 6 1.3.1 透明電流擴散薄膜簡介 6 1.3.2 紫外光發光二極體之透明電流擴散薄膜材料 6 1.4 石墨烯 8 1.4.1 石墨烯之發展歷史 8 1.4.2 石墨烯晶格結構與電子能帶 9 1.4.3 石墨烯之光學特性 10 1.4.4 製備石墨烯 11 1.5 介面特性 13 1.5.1 功函數 13 1.5.2 金半接面之蕭特基接觸與歐姆接觸 14 1.5.3 石墨烯作為透明電流擴散層與p型氮化鎵之介面 16 1.6 專利與文獻回顧 18 第二章 實驗樣品製備流程與儀器分析原理 34 2.1 藉原子層沉積系統製備氧化鎳 34 2.2 藉電子槍金屬蒸鍍系統製備鎳薄膜 35 2.3 藉電漿輔助式化學氣相沉積製備石墨烯 36 2.4 實驗樣品製備流程 38 2.5 儀器原理 39 2.5.1 X光光電子暨歐傑電子能譜儀 39 2.5.2 拉曼光譜儀 40 2.5.3 圓形傳輸線量測 43 2.5.4 分光光度儀 45 2.5.5 穿透式電子顯微鏡 45 2.5.6 飛行時間二次離子質譜儀 45 第三章 實驗結果與討論 46 3.1 石墨烯特性量測 46 3.1.1 藉TEM檢視石墨烯 47 3.1.2 拉曼光譜量測與分析 48 3.1.3 石墨烯穿透度量測與分析 49 3.1.4 石墨烯均勻度測試 51 3.2 氧化鎳緩衝層之特性量測 53 3.2.1 氧化鎳緩衝層TEM結構圖 53 3.2.2 氧化鎳穿透度量測與分析 53 3.2.3 氧化鎳緩衝層功函數量測與分析 55 3.3 石墨烯/氧化鎳緩衝層/氮化鎵之介面結構量測與分析 59 3.3.1 藉TEM檢視介面結構組成 59 3.3.2 TOF-SIMS 量測與分析 64 3.3.3 CTLM電性量測與分析 65 第四章 結論 68 參考文獻 69

    [1] Liu, A.; Bi, C.; Guo, R.; Zhang, M.; Qu, X.; Tian, J., Electroluminescence Principle and Performance Improvement of Metal Halide Perovskite Light‐Emitting Diodes, Adv. Opt. Mater. 2021, 9, 2002167.
    [2] Horng, R.-H.; Wu, B.-R.; Tien, C.-H.; Ou, S.-L.; Yang, M.-H.; Kuo, H.-C.; Wuu, D.-S., Performance of Gan-Based Light-Emitting Diodes Fabricated Using Gan Epilayers Grown on Silicon Substrates, Opt. Express 2014, 22, 179–187.
    [3] Matioli, E.; Weisbuch, C., Impact of Photonic Crystals on LED Light Extraction Efficiency: Approaches and Limits to Vertical Structure Designs, J. Phys. D: Appl. Phys. 2010, 43, 354005.
    [4] Chang, S.-J.; Kuo, C.-H.; Su, Y.-K.; Wu, L.; Sheu, J.-K.; Wen, T.-C.; Lai, W.; Chen, J.; Tsai, J., 400-Nm Ingan-Gan and Ingan-Algan Multiquantum Well Light-Emitting Diodes, IEEE J Sel Top Quantum Electron 2002, 8, 744–748.
    [5] Oguma, K.; Kita, R.; Sakai, H.; Murakami, M.; Takizawa, S., Application of UV Light Emitting Diodes to Batch and Flow-through Water Disinfection Systems, Desalination 2013, 328, 24–30.
    [6] Gao, N.; Huang, K.; Li, J.; Li, S.; Yang, X.; Kang, J., Surface-Plasmon-Enhanced Deep-UV Light Emitting Diodes Based on Algan Multi-Quantum Wells, Sci. Rep. 2012, 2, 1–6.
    [7] Su, L.; Grote, N.; Schmitt, F., Diffused Planar Inp Bipolar Transistor with a Cadmium Oxide Film Emitter, Electron. Lett. 1984, 18, 716–717.
    [8] Chandiramouli, R.; Jeyaprakash, B., Review of CdO Thin Films, Solid State Sci. 2013, 16, 102–110.
    [9] Mizuhashi, M., Electrical Properties of Vacuum-Deposited Indium Oxide and Indium Tin Oxide Films, Thin Solid Films 1980, 70, 91–100.
    [10] Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A., Graphene Photonics and Optoelectronics, Nat. Photonics 2010, 4, 611–622.
    [11] Yen, C.-H.; Liu, Y.-J.; Yu, K.-H.; Lin, P.-L.; Chen, T.-P.; Chen, L.-Y.; Tsai, T.- H.; Huang, N.-Y.; Lee, C.-Y.; Liu, W.-C., On an Algainp-Based Light-Emitting Diode with an ITO Direct Ohmic Contact Structure, IEEE Electron Device Lett. 2009, 30, 359–361.
    [12] Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K., Fine Structure Constant Defines Visual Transparency of Graphene, Science 2008, 320, 1308–1308.
    [13] Hamberg, I.; Granqvist, C. G., Evaporated Sn‐Doped In2O3 Films: Basic Optical Properties and Applications to Energy‐Efficient Windows, J. Appl. Phys. 1986, 60, R123–R160.
    [14] Casiraghi, C.; Hartschuh, A.; Lidorikis, E.; Qian, H.; Harutyunyan, H.; Gokus, T.; Novoselov, K. S.; Ferrari, A., Rayleigh Imaging of Graphene and Graphene Layers, Nano Lett. 2007, 7, 2711–2717.
    [15] Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin, S. A.; Logsdail, A. J.; Woodley, S. M.; Catlow, C. R. A.; Powell, M.; Palgrave, R. G.; Parkin, I. P., Band Alignment of Rutile and Anatase TiO2, Nat. Mater. 2013, 12, 798–801.
    [16] Garg, R.; Dutta, N. K.; Roy Choudhury, N., Work Function Engineering of Graphene, Nanomaterials 2014, 4, 267–300.
    [17] Ruess, G.; Vogt, F., Höchstlamellarer Kohlenstoff Aus Graphitoxyhydroxyd, Monatsh. Chem. 1948, 78, 222–242.
    [18] Tiwari, S. K.; Sahoo, S.; Wang, N.; Huczko, A., Graphene Research and Their Outputs: Status and Prospect, J. Sci.-Adv. Mater. Dev. 2020, 5, 10–29.
    [19] Razaq, A.; Bibi, F.; Zheng, X.; Papadakis, R.; Jafri, S. H. M.; Li, H., Review on Graphene-, Graphene Oxide-, Reduced Graphene Oxide-Based Flexible Composites: From Fabrication to Applications, Materials 2022, 15, 1012.
    [20] Geim, A. K., Graphene: Status and Prospects, Science 2009, 324, 1530-1534. [21] Neto, A. C.; Guinea, F.; Peres, N. M.; Novoselov, K. S.; Geim, A. K., The Electronic Properties of Graphene, Rev. Mod. Phys. 2009, 81, 109.
    [22] Dziarmaga, J., Dynamics of a Quantum Phase Transition and Relaxation to a Steady State, Adv. Phys. 2010, 59, 1063–1189.
    [23] Trotzky, S.; Cheinet, P.; Folling, S.; Feld, M.; Schnorrberger, U.; Rey, A. M.; Polkovnikov, A.; Demler, E. A.; Lukin, M. D.; Bloch, I., Time-Resolved Observation and Control of Superexchange Interactions with Ultracold Atoms in Optical Lattices, Science 2008, 319, 295–299.
    [24] Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K., Fine Structure Constant Defines Visual Transparency of Graphene, Science 2008, 320, 1308–1308.
    [25] Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S., Graphene Based Materials: Past, Present and Future, Prog. Mater. Sci. 2011, 56, 1178–1271.
    [26] Norimatsu, W.; Kusunoki, M., Formation Process of Graphene on SiC (0 0 0 1), Physica E Low Dimens. Syst. Nanostruct. 2010, 42, 691–694.
    [27] Jia, F.; Xiao, X.; Nashalian, A.; Shen, S.; Yang, L.; Han, Z.; Qu, H.; Wang, T.; Ye, Z.; Zhu, Z., Advances in Graphene Oxide Membranes for Water Treatment, Nano Res. 2022, 1–19.
    [28] Park, Y.; Choong, V.; Gao, Y.; Hsieh, B. R.; Tang, C. W., Work Function of Indium Tin Oxide Transparent Conductor Measured by Photoelectron Spectroscopy, Appl. Phys. Lett. 1996, 68, 2699–2701.
    [29] Dupin, J.-C.; Gonbeau, D.; Vinatier, P.; Levasseur, A., Systematic Xps Studies of Metal Oxides, Hydroxides and Peroxides, Phys. Chem. Chem. Phys. 2000, 2, 1319– 1324.
    [30] Sheu, J.; Su, Y.-K.; Chi, G.-C.; Koh, P.; Jou, M.; Chang, C.; Liu, C.; Hung, W., High-Transparency Ni/Au Ohmic Contact to P-Type Gan, Appl. Phys. Lett. 1999, 74, 2340–2342.
    [31] Lieten, R.; Degroote, S.; Kuijk, M.; Borghs, G., Ohmic Contact Formation on N- Type Ge, Appl. Phys. Lett. 2008, 92, 022106.
    [32] Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science 2009, 324, 1312–1314.
    [33] Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S.-S., Graphene Segregated on Ni Surfaces and Transferred to Insulators, Appl. Phys. Lett. 2008, 93, 113103.
    [34] Kato, T.; Hatakeyama, R., Direct Growth of Doping-Density-Controlled Hexagonal Graphene on SiO2 Substrate by Rapid-Heating Plasma Cvd, ACS Nano 2012, 6, 8508–8515.
    [35] Guo, L.; Zhang, Z.; Sun, H.; Dai, D.; Cui, J.; Li, M.; Xu, Y.; Xu, M.; Du, Y.; Jiang, N., Direct Formation of Wafer-Scale Single-Layer Graphene Films on the Rough Surface Substrate by Pecvd, Carbon 2018, 129, 456–461.
    [36] Zhang, Y.; Li, X.; Wang, L.; Yi, X.; Wu, D.; Zhu, H.; Wang, G., Enhanced Light Emission of Gan-Based Diodes with a NiO X/Graphene Hybrid Electrode, Nanoscale 2012, 4, 5852–5855.
    [37] 刘立伟; 牛亮; 邢振远; 宋仁升; 荣吉赞; 赵勇杰; 耿秀梅; 李伟伟; 程国胜, 基于石墨烯的透明导电电极及其制法与应用, 2013.
    [38] 李方芳; 郝锐; 许德裕; 王波; 罗长得; 易翰翔; 刘洋, 一种复合透明导电电
    极的 LED 芯片及其制作方法, CN104505445, 2018.
    [39] 周玉刚; 陈伟; 张荣, 紫外发光二极管芯片及其制造方法, CN106129208, 2016.
    [40] 王安生; 周玉刚; 张荣, 一种高出光率、高可靠性的紫外发光二极管及其制 造方法, CN106876532, 2019.
    [41] 黄丰; 郑伟; 林日成; 张召君, 一种零功率消耗的真空紫外光伏探测器, CN107611216, 2019.
    [42] 孙捷; 熊访竹; 郭伟玲; 董毅博; 樊星; 苑营阔, 一种氮化镓上生长石墨烯 提高 LED 透明导电及散热性的方法, CN110611017, 2021.
    [43] Chen, J.; Brewer, W. D., Ohmic Contacts on P‐Gan, Adv. Electron. Mater. 2015, 1, 1500113.

    無法下載圖示 本全文未授權公開
    QR CODE