簡易檢索 / 詳目顯示

研究生: 張承瑞
Zhang, Chen-Rui
論文名稱: 以錐蜷殼體之穩定碳氧同位素及元素成分探討古環境—以斯里蘭卡Bolgoda湖泊為例
Paleoenvironment inferred from stable carbon and oxygen isotope and element composition of thiaridis shells – a case study of Lake Bolgoda, Sri Lanka
指導教授: 米泓生
Mii, Horng-Sheng
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 68
中文關鍵詞: 穩定同位素元素成分古環境全新世
英文關鍵詞: stable isotope, element composition, paleoenvironment, Holocene
DOI URL: http://doi.org/10.6345/NTNU201900895
論文種類: 學術論文
相關次數: 點閱:115下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分析斯里蘭卡Bolgoda湖泊現生及湖泊岩芯(長度410 cm;取樣深度9 cm-253.5 cm)中的霰石質軟體動物殼體,進行穩定碳氧同位素以及微量元素成分分析來探討斯里蘭卡地區近2400年以來的環境特徵。
    現生標本氧同位素數值介於-6.6‰和-1.7‰ 之間,(平均值為-3.2 ± 0.9‰,N=74;1σ;V-PDB)。岩芯中標本氧同位素數值介於-6.9‰和-1.8‰ 之間,(平均值為-4.0 ± 1.1‰,N=352;1σ;V-PDB)。將推算後的水體氧同位素數值與可倫坡測站30年平均氣溫資料帶入同位素溫度方程式計算出標本一年間的氧同位素理論平衡值,部分標本氧同位素記錄與理論平衡值呈現相似的季節性震盪變化,標本氧同位素數值約可呈現6個月至2年之季節性震盪記錄。
    現生標本及岩芯標本的元素分析結果顯示Al/Ca、Fe/Ca、Mn/Ca比值均接近於偵測極限(0.3 mmol/mol),進一步顯示本研究標本的保存度良好,未受成岩作用影響。Bolgoda湖泊水體混和均勻,水體鹽度大致介於2 ppt~ 20 ppt之間,湖水鹽度受到海水及天水影響,理論上水體(殼體)氧同位素數值可以反映淡水注入比例。若殼體Na/Ca 比值的變化主要受到鹽度的影響,標本氧同位素數值較大或較小值時伴隨著較高或低的Na/Ca 比值,進一步反映了乾季及雨季降雨量的差異。
    季節性震盪中,現生標本及岩芯標本,於乾季之氧同位素數值多在-2‰左右;而雨季時現生標本約為-4‰;岩芯標本則約為-6‰。假設斯里蘭卡地區近3000年來溫度變化小,因此忽略溫度變化對標本氧同位素數值之影響,則現生標本及岩芯中標本相比可反映2340-190 (cal yr BP)斯里蘭卡西南部雨季降雨較現今強,亦表示較強烈的印度洋西南季風時期;而乾季降雨的降雨量變化不大。

    To exam whether stable isotope and element composition records of thiaridae shells can be used as proxies of environment and to unravel the paleoenvironment, this study analyzed 10 shells collected from a core( ~2400 yr B.P. to present ), drilled in Lake Bolgoda and 4 modern samples collected from lakefront of Lake Bolgoda, Sri Lanka.
    The oxygen and carbon isotope values of modern shells are from -6.6‰ to -1.7‰ ( -3.2 ± 0.9‰, N = 74; average ± 1σ; V-PDB ) and from -11.3‰ to -1.7‰ ( -4.4 ± 2.6‰ ), respectively. Oxygen and carbon isotope values of the core shells are from -6.9‰ to -1.8‰,(-4.0 ± 1.1‰, N = 352)and from -13.0‰ to -1.0‰ ( -5.6 ± 3.1‰ ) , respectively.
    Compare shell oxygen isotope values with those of predicted values, the seasonal fluctuation pattern is similar to each other and 0.5~2.0 years of seasonal fluctuations are observed.
    Most of the Al/Ca, Fe/Ca, Mn/Ca values of gastropod shells are low or below the detection limit indicate the samples studies are not altered by diagenesis thus well preserved. Assuming Na/Ca contents of gastropod shells were mainly influenced by the Na/Ca content of water which these gastropods lived in, higher Na/Ca of shells may indicate higher salinity ( low amount precipitation ) of lake water. Thus, Na/Ca of shells can be used to infer the intensity change of Indian Ocean SW monsoon.
    Seasonality of core shells were more variable, in terms of difference in δ18O values, than those of modern shells indicating ~2400 years B.P. southwestern Sri Lanka was influenced by stronger Indian Ocean southwest monsoon and received more rainfall then present.

    摘要 ii Abstract ii 致謝 vi 目錄 vii 圖目 x 表目 xii 第一章、緒論 1 1.1 前言 1 1.2 標本介紹及相關研究 2 1.3 穩定同位素 3 1.4 軟體動物殼體碳氧同位素之環境意義 5 1.5 軟體動物殼體微量元素之環境意義 6 1.6 斯里蘭卡近3000年古環境研究 7 1.7 研究動機與目的 8 第二章、研究區域及材料 9 2.1 研究區域 9 2.2 研究材料 12 第三章、研究方法 14 3.1 標本前處理 14 3.2 殼體組成及成岩作用檢測 14 3.3 標本取樣 15 3.4 穩定碳氧同位素分析 15 3.5 微量元素分析 16 3.6 碳酸鹽叢同位素(Carbonate Clumped-isotope)分析 16 第四章、結果與討論 19 4.1 標本構造與觀察 19 4.2 殼體成分及保存度測試 20 4.3 殼體分層 23 4.4 碳酸鹽叢同位素溫度計 29 4.5 殼體氧同位素理論平衡值估算 30 4.6 殼體穩定同位素探討 33 第五章、結論 41 參考文獻 42 附錄 49 附錄一、現生錐蜷殼體碳氧同位素及Na/Ca數值 49 附錄二、岩芯中黑蜷殼體碳氧同位素及元素分析數值 52 附錄三、碳酸鹽叢同位素數據 68

    任淑仙等編著,1995,無脊椎動物學(上):淑馨出版社,第302-342頁
    林采玟,2016,中華民國105年地質與地球物理聯合年會論文壁報
    彭宗仁、汪中和,1990,現生錐螺與台南層錐螺化石碳氧同位素組成之初步比較:中國地質學會會刊,第33卷,第4期,第289-301頁
    彭宗仁、汪中和、陳鎮東,1990,苗栗白沙屯過港貝化石層內軟體動物化石之碳氧同位素研究:經濟部中央地質調查所特刊,第4號,第307-322頁
    連凱莉、陳明輝,2004,如何判別鐘螺和蠑螺的性別?一種快速又簡便的方法:漁業推廣,行政院農委會漁業署,第208號,第52-54頁
    蔡英亞、張英、魏若飛,1997,貝類學概論:水產出版社
    Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J., and Land, L. S., 1983, Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems: Stable isotopes in sedimentary geology: SEPM Short Course, p. 1-151.
    Attendorn, H .G., and Bowen, R. N. C., 1997, Radioactive and Stable Isotope Geology: London, Chapman & Hall, p.1-522.
    Bergamonti, L., Bersani, D., and Lottici, P. P., 2011, The Nature of the Pigments in Corals and Pearls: A Contribution from Raman Spectroscopy: Spectroscopy Letters, v. 44, p. 453-458.
    Berrocoso, Á., Zuluaga, M., and Elorza, J., 2004, Minor- and trace-element intra-shell variations in Santonian inoceramids (Basque-Cantabrian Basin, northern Spain): Diagenetic and primary causes: Facies, v. 50, p. 35-60.
    Cao, X., and Liu, Y., 2012, Theoretical estimation of the equilibrium distribution of clumped isotopes in nature: Geochimica et Cosmochimica Acta, v. 77, p.292-303.
    Curry, W. B., Duplessy, J. C., Labeyrie, L. D., and Shackleton, N. J., 1988, Changes in the distribution of δ13C of deep water ΣCO2 between the last glaciation and the Holocene: Paleoceanography, v. 3, p. 317-341.
    Dennis, K. J. and Schrag, D. P., 2010, Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration: Geochim. Cosmochim. Acta, v. 74, p. 4110-4122.
    Dettman, D. L., Reische, A. K., and Lohmann, K. C., 1999, Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (unionidae): Geochimica et Cosmochimica Acta, v. 63(7-8), p. 1049-1057.
    Eagle, R. A., Schauble, E. A., Tripati, A. K., Tutken, T., Hulbert, R. C., and Eiler, J. M. 2010, Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite: Proceedings of the National Academy of Sciences, v. 107(23), p. 10377-10382.
    Edirisinghe, E. A. N. V., Pitawala, H. M. T. G. A., Dharmagunawardhane, H. A., and Wijayawardane, R. L., 2017, Spatial and temporal variation in the stable isotope composition (δ18O and δ2H) of rain across the tropical island of Sri Lanka: Isotopes in Environmental and Health Studies, v. 53(6), p. 628-645.
    Eiler, J. M., 2007, “Clumped-isotope” geochemistry—The study of naturally-occurring, multiply-substituted isotopologues: Earth and Planetary Science Letters, v. 262(3), p. 309-327.
    Epstein, S., and Mayeda, T., 1953, Variation of 18O content of water from natural sources: Geochimica et Cosmochimica Acta, v. 4, p. 213-224.
    Fredrik, P. A., Birger, S., and Emma, J., 1999, Surface-Water Seasonality from Stable Isotope Profiles of Littorina littorea Shells: Implications for Paleoenvironmental Reconstructions of Coastal Areas: PALAIOS, V. 14, n. 3, p. 273-281.
    Gaspard, D., Paris, C., Loubry, P., and Luquet, G., 2019, Raman investigation of the pigment families in recent and fossil brachiopod shells: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 208, p. 73-84.
    Gayantha, K., Routh, J., and Chandrajith, R., 2017, A multi-proxy reconstruction of the late Holocene climate evolution in Lake Bolgoda, Sri Lanka: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 473, p. 16-25.
    Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E. A., Schrag, D., and Eiler, J. M., 2006, 13C–18O bonds in carbonate minerals: A new kind of paleothermometer: Geochimica et Cosmochimica Acta, v. 70(6), p. 1439-1456.
    Gillikin, D. P., Lorrain, A., Navez, J., Taylor, J. W., André, L., Keppens, E., Dehairs, F., 2005, Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells: Geochemistry, Geophysics, Geosystems, v. 6, n. 5, p. 1-16.
    Gobac, Z. Z., Posilovic, H., and Bermanec, V. 2009, Identification of biogenic Calcite and Aragonite using SEM: Geologia Croatica, v. 9611, p. 201-206.
    Goldberg, E. D., 1975, The mussel watch: A first step in global marine monitoring: Marine Pollution Bulletin, v. 6, p. 111.
    Grossman, E. L., and Ku, T. L., 1986, Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects: Chemical Geology, v. 59, p. 59-74.
    Gunatilaka, W. M. P., and Wijeyaratne, S. C., 2009, A study of water quality of Bolgoda North Lake: Vidyodaya J of Sci., v. 14, no. 11, p. 113-133.
    Guo, Y., Deng, W., Wei, G., Lo, L., and Wang, N., 2019, Clumped isotopic signatures in land-snail shells revisited: Possible palaeoenvironmental implications: Chemical Geology, v. 519, p. 83-94.
    Hellings, L., Dehairs, F., Tack, M., Keppens, E., and Baeyens, W., 1999, Origin and fate of organic carbon in the freshwater part of the Scheldt Estuary as traced by stable carbon isotope composition: Biogeochemistry, v. 47, p. 167-186.
    Henkes, G. A., Passey, B. H., Wanamaker, A. D., Grossman, E. L., Ambrose, W. G., & Carroll, M. L.,2013, Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells: Geochimica et Cosmochimica Acta, v. 106, p. 307-325.
    Hickman, C.S., 1992, Interpreting the separate taphonomic fates of turbinid gastropod shells and opercula in fossil mollusk assemblages: Western Society of Malacologists, v. 24, p. 18-19.
    Hudson, J. D., and Anderson, T. F., 1989, Ocean temperatures and isotopic compositions through time: Transactions of the Royal Society of Edinburgh: Earth Sciences, v. 80, p. 183-192.
    Hughes, M. K., Schweingruber, F. H., Cartwright, D., and Kelly, P.M., 1984, July/August temperature at Edinburgh between 1721 and 1975 from tree-ring density and width data: Nature, v. 308, p. 341-344.
    Huntington, K. W., Budd, D. A., Wernicke, B. P., and Eiler, J. M., 2011, Use of Clumped-Isotope Thermometry To Constrain the Crystallization Temperature of Diagenetic Calcite: Journal of Sedimentary Research, v. 81(9), p. 656-669.
    Kluge, T., John, C. M., Jourdan, A.-L., Davis, S., and Crawshaw, J., 2015, Laboratory calibration of the calcium carbonate clumped isotope thermometer in the 25-250°C temperature range: Geochimica et Cosmochimica Acta, v. 157, p.213-227.
    Kobashi, T., Grossman, E. L., Yancey, T. E., and Dockery, D. T., 2001, Reevaluation of conflicting Eocene tropical temperature estimates: Molluskan oxygen isotope evidence for warm low latitudes: Geology, v. 29, p. 983-986.
    Kroopnick, P. M., 1974a, Correlations between 13C and ΣCO2 in surface waters and atmospheric CO2: Earth Planetary Science Letters, v. 22, p. 397-403.
    Kroopnick, P. M, 1974b, The dissolved O2-CO2-13C system in the eastern Equatorial Pacific: Deep-Sea Research, v. 21, p. 211-227.
    Kroopnick, P. M., Deuser, W. G., and Craig, H., 1970, Carbon 13 measurements on dissolved inorganic carbon at the North Pacific (1969) Geosecs station.:Journal of Geophysical Research, v. 75, p. 7668-7671.
    Löffler, N., Fiebig, J., Mulch, A., Tütken, T., Schmidt, B. C., Bajnai, D., Conrad, A. C., Wacker, U., Böttcher, M. E., 2019, Refining the temperature dependence of the oxygen and clumped isotopic compositions of structurally bound carbonate in apatite: Geochimica et Cosmochimica Acta., v. 253, p. 19-38.
    Lok, A. F. S. L., W. F. Ang, P. X. Ng, B. Y. Q. Ng, and S. K. Tan, 2011, Status and distribution of Faunus ater (Linnaeus, 1758) (Mollusca: Cerithioidea) in Singapore: Nature in Singapore, v. 4, p. 115-121.
    Lorens, R. B., and Bender, M. L., 1980, The impact of solution chemistry on Mytilus edulis calcite and aragonite: Geochimica et Cosmochimica Acta, v. 44, n. 9, p. 1265-1278.
    Maier, C., Felis, T., Pätzold, J., and Bak, R.P.M., 2004, Effect of skeletal growth and lack of species effects in the skeletal oxygen isotope climate signal within the coral genus Porites: Marine Geology, v. 207, p. 193-208.
    Parthasarathy, B., Munot, A. A., and Kothawale, D. R., 1988, Regression modelfor estimation of indian foodgrain production from summer monsoon rainfall: Agricultural and Forest Meteorology, v. 42, no. 2-3, p. 167-182.
    Passey, B. H. and Henkes, G. A., 2012, Carbonate clumped isotope bond reordering and geospeedometry: Earth Planet. Sci. Lett.v. 351-352, p. 223-236.
    Premathilake, R., and Risberg, J., 2003, Late Quaternary climate history of the Horton Plains, central Sri Lanka: Quaternary Science Reviews, v. 22, p. 1525-1541.
    Spero, H. J., Bijima, J., Lea, D. and Bemis, B. E., 1997, Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes: Nature, v. 390(4), p. 497-500.
    Sri-aroon, P., Lohachit, C. and Harada, M., 2005, Brackish-water molluscs of Surat Thani Province, Southern Thailand: Southeast Asian Journal of Tropical Medicine and Public Health, v. 36, p. 180-188.
    Sri-aroon, P., Lohachit, C. and Harada, M., 2006, Malacological survey in Phang-Nga Province, Southern Thailand, Pre- and Post-Indian Ocean Tsunami: Southeast Asian Journal of Tropical Medicine and Public Health, v. 37, p. 104-109.
    Staubwasser, M., Sirocko, F., Grootes, P. M., and Segl, M., 2003, Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability: Geophysical research letters, v. 30.
    Suzuki A., Yukino I., Kawahata H., 1999, Temperature-skeletal δ18O relationship of Porites australiensis from Ishigaki Island, the Ryukyus, Japan: Geochem. J., v. 33, p. 419-428.
    Urey, H. C., Lowenstam, H. A., Epstein, S., and McKinney, C. R., 1951, Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and southeast United States: Geological Society of America Bulletin, v. 62, p. 399-416.
    Veena, M. P., Achyuthan, H., Eastoe, C., and Farooqui, A., 2014, A multi-proxy reconstruction of monsoon variability in the late Holocene, South India: Quaternary International, v. 325, p. 63-73.
    Vermeij, G., 2002, Evolution in the consumer age: predators and the history of life: Paleontol. Soc. v. 8, p. 375-394.
    Wade, J., Pugh, H., Nightingale, J., Kim, J. S., and Williams, S. T., 2019, Colour in bivalve shells: Using resonance Raman spectroscopy to compare pigments at different phylogenetic levels: Journal of Raman Spectroscopy, p. 1-10.
    Wang, C. H., Peng, T. R., and Chen, P. F., 1991, Oxygen And Carbon Isotopic Compositions Of Mollusks From The Late Pleistocene Szekou Formation, Southern Taiwan: Earth Sci. Academia Sinica, p. 11-49.
    Webb, T., 1998, Late Quaternary Climates: Data Synthesis and Model Experiments: Quaternary Science Reviews, v.17, p.587-606.
    Weber J. N. and Rocque A. L., 1964, Carbon Isotopic Composition of Lacustrine Gastropoda from Pond-Weed Environments: Journal of Paleontology, v. 38, no. 5 , p. 965-967.
    Wehrmeister, U., Jacob, D. E., Soldati, A. L., Ha¨ger, T., and Hofmeister, W., 2007, Vaterite in freshwater cultured pearls from China and Japan: J. Gemmol., v. 31, p. 269-276.
    Wijeyaratne, W. D. N., 2016, Application of pollution indices to quantify the pollution status of shallow sediments of the Bolgoda Lake, Sri Lanka. Journal of the National Science Foundation of Sri Lanka, v. 44(3), p. 279-289.
    Williams, P. W., Marshall, A., Ford, D. C. and Jenkinson, A. V., 1999, Palaeoclimatic interpretation of stable isotope data from Holocene speleothems of the Waitomo district, North Island, New Zealand: Holocene, v. 9, p. 649-657.
    Woodroffe, S. A., and Horton, B. P., 2005, Holocene sea-level changes in the Indo-Pacific: Journal of Asian Earth Sciences, v. 25(1), p. 29-43.
    Yap, C. K., Aziran, Y. and Cheng, W. H., 2009, Distribution of heavy metal concentrations in different soft tissues and shells of the bivalve Psammotaea elongata and gastropod Faunus ater collected from Pantai Sri Tujuh, Kelantan: Journal of Sustainability Science and Management, v. 4(1), p. 66-74.
    Yap, C. K., Hisyam, M. N. D., Edward, F. B., Cheng, W. H., and Tan, S. G.,2010, Concentrations of Heavy Metal in Different Parts of the Gastropod, Faunus ater (Linnaeus), Collected from Intertidal Areas of Peninsular Malaysia: Pertanika Journal of Tropical Agricultural Science, v. 33(1), p. 45-60.
    Zaarur, S., Affek, H. P., and Brandon, M., 2013, A revised calibration of the clumped isotope thermometer: Earth Planet.Sci. Lett., v. 382, p. 47-57.
    Zinsmeister, W. J. and Camacho, H. H., 1980, Late Eocene Struthiolariidae (Mollusca, Gastropoda) from Seymour Island, Antarctic Peninsula and their significance to the biogeography of Early Tertiary shallow-water faunas of the Southern Hemisphere: Journal of Paleontology, v. 54, p. 1-14.

    下載圖示
    QR CODE