簡易檢索 / 詳目顯示

研究生: 趙珩宇
Chan, Heng-Yu
論文名稱: 科技╱自造教室的雷射切割機之細懸浮微粒研究
Investigation of particulate matter (PM) 2.5 of laser cutter in technology classroom and makerspace
指導教授: 林坤誼
Lin, Kuen-Yi
學位類別: 碩士
Master
系所名稱: 科技應用與人力資源發展學系
Department of Technology Application and Human Resource Development
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 68
中文關鍵詞: 科技教室自造創客雷射切割細懸浮微粒PM2.5
英文關鍵詞: Technology classroom, Laser cutting
DOI URL: http://doi.org/10.6345/NTNU201900570
論文種類: 學術論文
相關次數: 點閱:253下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著科技的發展,實作課程也講求以數位化的形式提供學生進行學習與加工,因此許多數位加工機具隨著各種政府計畫推動而引入了教學現場。但在教學現場實作時,數位加工機具看似較傳統加工機具少了許多粉塵,但其實在加工時依舊會產生大量之細懸浮微粒。因此本研究即以臺北市兩所學校之不同類之雷射切割機,使用Alphasense所生產之光學懸浮微粒檢測儀進行細懸浮微粒(PM2.5)檢測,並使用一般教學常用之密集板以及壓克力進行雕刻與切斷兩種加工,以了解其細懸浮微粒之產生情形。
    在本實驗中為了解細懸浮微粒產生情形,設計了污染源測試以及教室操作環境檢測,在檢測結果上,污染源測試之細懸浮微粒數值以及教室內加工時之細懸浮微粒數值皆高於環保署規定之安全數值35μg/m3,其中密集板之雷射雕刻平均值可達856.95μg/m3,壓克力數值則達210.45μg/m3。實驗並且針對操作後之細懸浮微粒數值下降幅度進行檢測與確認,測試之細懸浮微粒之下降至安全範圍所需時間超過一分鐘。因此在本研究中亦針對雷射切割機具在教學時之加工操作方式提供操作意見,希望透過本實驗之檢測結果,提供教師以及學生更優質之教學環境。

    In recent years, with the development of science and technology, the technology curriculum also aims to provide students with learning and processing in a digital form. Therefore, many digital processing tools have been introduced into the teaching field with the promotion of various government programs. However, when the teaching site is implemented, the digital processing tools seem to have a lot less dust than the traditional processing tools, but in fact, a large amount of fine aerosols are still generated during processing. Therefore, this study use different type of laser cutting machine from two schools in Taipei to use the optical aerosol detector produced by Alphasense for the detection of fine aerosols (PM2.5), and uses the dense plates and pressures commonly used in general teaching. Cree performs two processes of engraving and cutting to understand the generation of fine aerosols.
    In this experiment, in order to understand the situation of fine aerosol generation, the pollution source test and the classroom operating environment test were designed. In the test results, the value of the fine aerosols in the pollution source test and the fine aerosol values in the classroom processing were higher than the EPA regulations. The safety value is 35μg/m3, in which the laser engraving average of the dense plate can reach 856.95μg/m3, and the acrylic value is 210.45μg/m3. Experiments were carried out to detect and confirm the magnitude of the decrease in the value of the fine aerosol after the operation, and it took more than one minute for the tested fine aerosol to fall below the safe range. Therefore, in this study, we also provide operational opinions on the processing operation mode of laser cutting tools during teaching. It is hoped that through the test results of this experiment, teachers and students will be provided with a better teaching environment.

    中文摘要 i 英文摘要 ii 目 錄 iv 表 次 vi 圖 次 vii 第一章 緒論........................................................................1 第一節 研究背景與動機......................................................2 第二節 研究目的與待答問題...............................................5 第三節 研究範圍與限制......................................................7 第四節 重要名詞釋義.........................................................10 第二章 文獻探討.................................................................13 第一節 室內空氣細懸浮微粒之研究.....................................13 第二節 OPC-N2細懸浮微粒檢測設備..................................18 第三節 科技╱自造教室的雷射切割機之應用現況................20 第三章 研究方法.................................................................25 第一節 研究設計與流程.......................................................25 第二節 研究對象..................................................................27 第三節 研究工具與材料.......................................................30 第四節 資料分析與詮釋.......................................................34 第四章 研究結果與討論……………………………………………………35 第一節 不同加工材料切斷加工方式之細懸浮微粒產生狀況.. 36 第二節 不同材料雕刻加工方式之細懸浮微粒產生狀況……... 44 第三節 雷射切割機外細懸浮微粒檢測……………………………… 53 第四節 雷射切割機之加工細節討論……….………………………… 56 第五章 結論與建議 .............................................................. 61 第一節 結論 ........................................................................ 61 第二節 建議 ........................................................................ 63 參考文獻 65 一、中文部分 65 二 英文部分 67

    參考文獻
    一、 中文部分
    李隆盛、吳正己、游光昭、周麗端(2013)。十二年國民基本教育生活與科技領域綱要內容之前導研究。取自 https://www.naer.edu.tw/ezfiles/0/1000/img/49/NAER-102-06-A-1-02-09-1-18.pdf
    高小萍、陳姵安、劉志青(2014)。懸浮微粒之健康危害及預防。國家同步輻射研究中心簡訊,89,13-14。
    陳智理、曹宏熙(2017)。光纖雷射技術原理與薄鋼板切割應用簡介。機械工業雜誌,407,56-57。
    陳維新、江金龍(2017)。空氣汙染與控制。高立圖書有限公司。
    教育部國民及學前教育署(2015)。105年度教育部國民及學前教育署推動高級中等學校3D列印普及培育計畫。臺教國署高字第1040147343號函核定。
    楊隆昌(2014)。雷射發展的趨勢與應用。中工高雄會刊,22(1),23-33。
    鄒永祥(2001)。雷射應用產業現況與趨勢。光連雙月刊,35,39-48。
    蔡曜輝(2014)。雷射切割塑膠製程之環境荷爾蒙排放特徵及其勞工健康風險評估。成大碩士論文。
    蔡欣怡(2015)。教育部推動高中「創意自造」5年計畫及國中「區域職業試探與體驗示範中心」讓技職產學強化實作職業認知試探向下扎根(2015年10月23日)。取自 http://www.edu.tw/News_Content.aspx?
    鄭尊仁、吳焜裕、李崇德、陳主智(2011)。空氣品質標準檢討評估、細懸浮微粒空氣品質標準研訂計畫。環保署/國科會空污防制科研合作計畫期末報告。
    賴彥宏(1999)。我國事業單位局部排氣裝置設置現況、有效性與能耗情形之分析。成大碩士論文。
    環保署(2003)。空氣污染防制法施行細則。環署空字第0920045523號令發布。
    環保署(2012)。室內空氣品質管理法。華總一義字第10000259721號。
    環保署(2012)。空氣品質標準。環署空字第1010038913 號令修正發布。
    羅偉成、謝瑞豪、詹長權、林先和(2016)。台灣可歸因於 PM2.5 暴露之死亡負擔。台灣醫學,20(4),396-405。

    二、 外文部分
    Alphasense . (2015). Alphasense User Manual OPC-N2 Optical Particle Counter. from: http://stg-uneplive.unep.org/
    Almeida, C.M.V.B., Madureira, M.A., Bonilla S.H., & Giannetti, B.F. (2013). Assessing the replacement of lead in solders: effects on resource use and human health. Journal of Cleaner Production ,47, 457–464. doi: 10.1016/j.jclepro.2012.08.002
    Ahmad J. (2009). Introduction to Polymer Composites. Machining of Polymer Composites, 1 – 35. doi: 10.1007/978-0-387-68619-6_1
    Busch, H., Holländer, W., Levsen, K., Schilhabel, J., Trasser, F.J., Neder. L. (1989). ”Aerosol formation during laser cutting of fiber reinforced plastics”, Journal of Aerosol Science, 20(8), 1473-1476. doi: 10.1016/0021-8502(89)90865-3
    Bromberg, J. L. (1991). The Laser in America. The MIT Press. Cambridge, MA.
    Crilley, L. R., Shaw, M., Poung, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., Popel, F. D. (2017). Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring. Atmospheric Measurement Techniques, 11(2). 709 - 720, doi: 10.5194/amt-11-709-2018
    Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., Broday, D., Bartonova, A. (2016). Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environment International, 99. 293–302. Doi: 10.1016/j.envint.2016. 12.007
    Sousan, S., Koehler, K., Hallett, L., Peters, T. M. (2016). Evaluation of the Alphasense Optical Particle Counter (OPC-N2) and the Grimm Portable Aerosol Spectrometer (PAS-1.108). Aerosol Science and Technology, 50(12), 1352 – 1365. doi: 10.1080/02786826.2016.1232859
    Siew, S. S., Kauppinen, T., Kyyrönen, P., Heikkilä, P., Pukkala, E. (2012). Occupational exposure to wood dust and formaldehyde and risk of nasal, nasopharyngeal, and lung cancer among Finnish men. Cancer Management and Research, 223(4). doi: 10.2147/CMAR.S30684
    Sickles, J. E., Chessin, R. L., Kashdan, E. R., Chrume, Y., Ranade, M. B. (1987). A Summary of Indoor Air Quality Research Through 1984. United States Environmental Protection Agency.
    United States Environmental Protection Agency. (1991). Indoor Air Facts No. 4 Sick Building Syndrome. Retrieved from: https://www.epa.gov/sites/ production/files/2014-08/documents/sick_building_factsheet.pdf
    World Health Organization. (2015). IARC Monographs on the Evaluation of Carcinogenic Risk of Humans. Outdoor Air Pollution, 109(2016), 4535–4564.
    World Health Organization. (2006). WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide, from: https://apps.who.int/iris/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pdf;jsessionid=050F581E1AAEA3BC591791680D6E1ACD?sequence=1
    Zhou, Y., Kong, X., Chen, A., Cao, S. (2015). Investigation of Ultrafine Particle Emissions of Desktop 3D Printers in the Clean Room. Procedia Engineering, 121. 506 – 512. doi: 10.1016/j.proeng.2015.08.1099

    下載圖示
    QR CODE