研究生: |
葉相均 Yeh, Hsiang-Chun |
---|---|
論文名稱: |
利用理論計算來研究如何合成及修改奈米碳管 The synthesis of modified CNT for catalysis:A VASP study |
指導教授: |
蔡明剛
Tsai, Ming-Kang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 奈米碳管 、氮原子參雜 、過渡金屬原子參雜 、吸附能 、缺陷形成能 、空位缺陷 、stone-wales缺陷 |
英文關鍵詞: | carbon nanotube, nitrogen doped, transition metal doped, adsorption energy, defect formation energy, vacancy defect, stone-wales defect |
DOI URL: | https://doi.org/10.6345/NTNU202204357 |
論文種類: | 學術論文 |
相關次數: | 點閱:132 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米碳管的應用非常的廣泛,經過各種類型的研究,碳管在催化上能夠有良好的效果,其重點是研究各種缺陷位對於碳管之貢獻,而這裡則鎖定於graphite-like型式的氮參雜缺陷為主體,先比較四個氮的缺陷與三個氮的缺陷位的性質,也考量參雜不一樣的金屬原子,比較其形成能的變化趨勢,在觀察吸附不同小分子的吸附能,發現其3N與4N兩種不同的缺陷,形成完全不同的配位場。
接著利用包含空位缺陷,stone-wales缺陷,氧氣吸附的吸附位,與含氮之缺陷位,這幾種類型是可能在合成碳管中出現的結構,找出其不同類型的缺陷位所擁有的關聯性,來加以判斷在合成碳管的過程中,其可能的趨勢為何種情況,最後,為了能夠控制出其缺陷位之形狀,而也找出一種能夠修復空位太大之情況。
There are many applications of carbon nanotube (CNT). In recent researches, CNT has good efficiency to be a catalyst, and we thought it is an important role of different defect sites in CNT. The graphite-like nitrogen doped defect is compared with three and four nitrogen atoms- doped CNT(N-CNT), we also discuss dopants of different transition metals on CNT. Tendency of formation energy and the adsorption of small molecules are studied. It is demonstrated that different ligand field exist in those defect sites.
Next, we consider vacancy defect site, stone wales defect and oxygen adsorption active site, because those sites may be stable in synthetic procedure of N-CNT. Then, we found they had connection with own defect site to discuss what possible mechanism in synthesis CNT.
At last, we discussed one possible situation that can repair too bigger vacancy site on CNT.
(1) Aviram, A.; Ratner, M. A. Chem. Phys. Lett. 1974, 29, 277.
(2) Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
(3) Prinzbach, H.; Weiler, A.; Landenberger, P.; Wahl, F.; Worth, J.; Scott, L. T.; Gelmont, M.; Olevano, D.; v. Issendorff, B. Nature 2000, 407, 60.
(4) Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Nat Mater 2007, 6, 652.
(5) Dresselhaus, G. D. P. E. M. Academic Press 1996, San Diego (1996).
(6) Sint, K.; Wang, B.; Král, P. J. Am. Chem. Soc. 2008, 130, 16448.
(7) Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev. 2006, 106, 1105.
(8) ZhangZhang; ZhangZhang; Liu J. Phys. Chem. B. 2006, 110, 4671.
(9) N.W.S. Kam, T. C. J., P.A. Wender, H.J. Dai J. Am. Chem. Soc. 2004, 126, 6850.
(10) Lee, J. M.; Park, J. S.; Lee, S. H.; Kim, H.; Yoo, S.; Kim, S. O. Adv. Mater. 2011, 23, 629.
(11) Médard, C.; Lefèvre, M.; Dodelet, J. P.; Jaouen, F.; Lindbergh, G. Electrochim. Acta 2006, 51, 3202.
(12) K. Gong, F. D., Z. Xia, M. Durstock, L. Dai Science 2009, 323, 760.
(13) Tripkovic, V.; Vanin, M.; Karamad, M.; Björketun, M. E.; Jacobsen, K. W.; Thygesen, K. S.; Rossmeisl, J. J. Phys. Chem. C. 2013, 117, 9187.
(14) C.P. Ewels, M. G. J. Nanosci. Nanotechnol. 2005, 5, 1345.
(15) Terrones, M.; Ajayan, P. M.; Banhart, F.; Blase, X.; Carroll, D. L.; Charlier, J. C.; Czerw, R.; Foley, B.; Grobert, N.; Kamalakaran, R.; Kohler-Redlich, P.; Rühle, M.; Seeger, T.; Terrones, H. Applied Physics A 2002, 74, 355.
(16) Sumpter, B. G.; Meunier, V.; Romo-Herrera, J. M.; Cruz-Silva, E.; Cullen, D. A.; Terrones, H.; Smith, D. J.; Terrones, M. ACS Nano 2007, 1, 369.
(17) M. Mattesini, S. F. M., J. Etourneau J. Mater. Chem. 2000, 10, 709.
(18) O.Yu. Podyacheva, A. N. S., A.I. Boronin, L.S. Kibis, S.V. Koscheev, E.Yu. Gerasimov, Z.R. Ismagilov J. Energy Chem. 2013, 22, 270.
(19) C. Tang, Y. B., D. Golberg, F. Xu Carbon 2004, 42, 2625.
(20) Liu, L. V.; Tian, W. Q.; Wang, Y. A. J. Phys. Chem. B. 2006, 110, 1999.
(21) Liu, L. V.; Tian, W. Q.; Wang, Y. A. J. Phys. Chem. B. 2006, 110, 13037.
(22) Smalley, R. E.; Li, Y.; Moore, V. C.; Price, B. K.; Colorado, R.; Schmidt, H. K.; Hauge, R. H.; Barron, A. R.; Tour, J. M. J. Am. Chem. Soc. 2006, 128, 15824.
(23) Billas, I. M. L.; Massobrio, C.; Boero, M.; Parrinello, M.; Branz, W.; Tast, F.; Malinowski, N.; Heinebrodt, M.; Martin, T. P. Computational Materials Science 2000, 17, 191.
(24) Tian, W. Q.; Vincent Liu, L.; Alexander Wang, Y. PCCP 2006, 8, 3528.
(25) Gongli Lu1, a., Kaiming Deng2,b), Haiping Wu2, Jinlong Yang3 and Xin Wang4 J. Chem. Phys. 2006, 124, 054305.
(26) Yang, C.-K.; Zhao, J.; Lu, J. P. Nano Letters 2004, 4, 561.
(27) Yildirim, T.; Ciraci, S. Phys. Rev. Lett. 2005, 94, 175501.
(28) Mabena, L. F.; Sinha Ray, S.; Mhlanga, S. D.; Coville, N. J. Applied Nanoscience 2011, 1, 67.
(29) Ge. G. Samsonidze, R. S., A. Jorio, M. A. Pimenta, A. G. Souza Filho, A. Grüneis, G. Dresselhaus and M. S. Dresselhaus J. Nanoscience and Nanotechnology 2003, 3, 431.
(30) Cramer, C. J. Essentials of Computational Chemistry: Theories and Models 2004.
(31) Levine, I. N. Quantum Chemistry 6Th Ed; Prentice-Hall Of India Pvt. Limited, 2009.
(32) Lewars, E. G. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics; Springer Netherlands, 2010.
(33) Parr, R. G. Y., W. Annual Review of Physical Chemistry 1995, 46, 701.
(34) Hartree, D. R. Mathematical Proceedings of the Cambridge Philosophical Society 1928, 24, 89.
(35) Hohenberg, P. K., W. Phys. Rev. 1964, 136, B864.
(36) Ullrich, C. A. K., W. Phys. Rev. Lett. 2001, 87, 093001.
(37) Sousa, S. F. F., P. A.; Ramos, M. J. J. Phys. Chem. A. 2007, 111, 10439.
(38) Hellmann, H. J. Chem. Phys. 1935, 3.
(39) In manuscript
(40) Tserpes, K. I.; Papanikos, P. Composite Structures 2007, 79, 581.
(41) Wu, J.; Hagelberg, F.; Dinadayalane, T. C.; Leszczynska, D.; Leszczynski, J. J. Phys. Chem. C. 2011, 115, 22232.
(42) Luo, G.; Liu, L.; Zhang, J.; Li, G.; Wang, B.; Zhao, J. ACS Appl Mater Interfaces 2013, 5, 11184.
(43) Özçelik, V. O.; Gurel, H. H.; Ciraci, S. Phys. Rev. B 2013, 88.
(44) Ohfuchi, M. J. Phys. Chem. C. 2015, 119, 13200.
(45) Kim, J.; Yamada, Y.; Sato, S. J. Phys. Chem. C. 2014, 118, 7085.
(46) Yim, W.-L.; Johnson, J. K. J. Phys. Chem. C. 2009, 113, 17636.
(47) Rossmeisl, J.; Logadottir, A.; Nørskov, J. K. Chem. Phys. 2005, 319, 178.