簡易檢索 / 詳目顯示

研究生: 温庭睿
Wen, Ting-Jui
論文名稱: Bcl-2-associated athanogene 3在Streptozotocin誘導第一型糖尿病大鼠心肌缺血再灌流傷害角色探討
The Role of Bcl-2-associated athanogene 3 in Streptozotocin-Induced Type 1 Diabetic Rats Myocardial Ischemia/Reperfusion Injury
指導教授: 鄭劍廷
Chien, Chiang-Ting
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 61
中文關鍵詞: 糖尿病缺血再灌流Bcl-2-associated athanogene 3細胞凋亡氧化壓力
英文關鍵詞: Diabetes mellitus, ischemia/reperfusion, Bcl-2-associated athanogene 3, apoptosis, oxidative stress
DOI URL: http://doi.org/10.6345/NTNU201900553
論文種類: 學術論文
相關次數: 點閱:222下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著糖尿病患人口持續增加,在21世紀的現代社會裡,糖尿病已經成為全球最重要的公共衛生議題之一。糖尿病是心血管疾病的危險因子,糖尿病患者發生心血管疾病的機率是非糖尿病患者的2到4倍。Bcl-2-associated athanogene 3 (BAG3) 是一種抗細胞凋亡的蛋白質。現在的研究已經了解BAG3對於心肌缺血再灌流傷害具有保護效果,但是在糖尿病的條件下,心肌缺血再灌流中BAG3的角色還不清楚。本篇研究主要的目的在於了解BAG3在糖尿病的條件下,與心肌缺血再灌流傷害所造成的氧化壓力和細胞凋亡的關聯。本篇研究使用streptozotocin (STZ) 誘發大鼠產生的第一型糖尿病,並使用冠狀動脈結紮,造成缺血再灌流傷害。在STZ誘發前與誘發後的第1, 2, 3, 4週,測量體重與空腹血糖值,並在STZ誘發後的第4週,進行代謝籠實驗,記錄24小時的飲水量、進食量、排尿量與糞便重量,確認第一型糖尿病誘發狀況。在STZ誘發後的第8週,測量腎臟的參數,包括腎臟重量,使用西方墨點法與免疫組織化學 (IHC) 分析腎臟4-hydroxynonenal (4-HNE) 的表現情形,與H&E染色測定腎臟病理變化。為了了解糖尿病對血管的影響,使用腸繫膜阻力動脈的第二分支進行離體血管張力測定。在STZ誘發後的第8週,在冠狀動脈左前降支的位置進行結紮,造成心肌缺血,持續45分鐘。心肌缺血45分鐘後,進行4小時的再灌流。左心室心舒末期壓力 (LVEDP)、壓力上升最大速率 (+dp/dt) 與壓力下降最大速率 (-dp/dt) 會透過左心室壓進行分析,並使用雷射都普勒血流影像儀分析缺血再灌流過程中,心臟表面血流微循環的變化。在完成心肌缺血再灌流手術後,使用MDA assay分析心臟組織MDA的量,使用西方墨點法分析心臟組織BAG3、Bcl-2、caspase 3、PARP的表現情形,與心臟組織切片H&E染色、IHC染色和TUNEL染色,以了解病理與生理的作用機轉。STZ誘發會出現體重下降與高血糖的症狀,並產生喝多、尿多與吃多的症狀,確認第一型糖尿病誘發成功。STZ誘發第一型糖尿病會造成腎臟肥大與腎臟氧化壓力。在STZ誘發糖尿病第8週,糖尿病大鼠的血管舒張功能顯著低於正常大鼠,並且血管的收縮力顯著低於正常大鼠。STZ誘發第一型糖尿病會加劇心肌缺血再灌流所造成的左心室功能損害、增加心臟的氧化壓力、降低BAG3的表現。STZ誘發第一型糖尿病顯著降低Bcl-2的表現,並加劇心肌缺血再灌流所造成的caspase 3活性與細胞凋亡。本篇研究顯示在糖尿病的條件下,STZ誘發第一型糖尿病會加劇心肌缺血再灌流所造成的氧化壓力、BAG3表現量降低與促細胞凋亡機轉,進一步造成心臟的損傷。

    The number of diabetic patients is steadily increasing. Diabetes has become one of the most important public health issue in the 21st century for being an important risk factor for induction of cardiovascular disease. The morbidity of cardiovascular disease in diabetic patients was two to four times higher than non-diabetic patients. Bcl-2-associated athanogene 3 (BAG3) is an anti-apoptotic protein. Recent studies have shown that BAG3 can confer cardiac protection against ischemia/reperfusion injury. However, under diabetic condition, the role of BAG3 in ischemia/reperfusion injury is still not clear. The aim of this study was to investigate the relation between BAG3 and ischemia/reperfusion injury-induced oxidative stress and apoptosis under diabetic condition. In this study, we used streptozotocin (STZ) to induce type 1 diabetes mellitus in rats, following by coronary artery ligation to induce ischemia/reperfusion injury. Before and after STZ induction, we first measured body weight and fasted blood glucose for four weeks. In the 4th week of STZ induction, we used metabolic cage to measure 24-hr water intake, food intake, urine and feces. In the 8th week of STZ induction, we measured the renal parameters including weight of kidneys, renal expression of 4-hydroxynonenal (4-HNE) by western blotting and immunohistochemistry (IHC) and renal pathology determination by hematoxylin and eosin (H&E). To examine the diabetic effect on vascular dynamics, the second-order branches of mesenteric arteries were used to measure isometric myograph. In the 8th week of STZ induction, we used coronary artery ligation to induce myocardial ischemia for 45 min followed by 4-hr reperfusion. Left ventricular end-diastolic pressure (LVEDP), peak rate of pressure increase (+dp/dt) and peak rate of pressure decrease (-dp/dt) were analyzed by left ventricular blood pressure. Cardiac microcirculation was determined by a laser Doppler blood flow monitor during ischemia/reperfusion injury. The levels of MDA in heart tissues were measured by MDA assay. Myocardial BAG3, Bcl-2, caspase 3 and PARP were determined by western blotting. Heart sections were stained with H&E, IHC and TUNEL to investigate pathological and physiological mechanism. The induction of STZ caused body weight loss and hyperglycemia, and STZ-induced diabetic rats developed polyphagia, polydipsia and polyuria. STZ-induced type 1 diabetes caused renal hypertrophy and oxidative stress. In the 8th week of STZ induction, the degree of vasorelaxation and vasoconstriction was significantly decreased in STZ-induced diabetic rats. STZ-induced type 1 diabetes exacerbated ischemia/reperfusion-induced left ventricular dysfunction, oxidative stress and BAG3 downregulation. STZ-induced type 1 diabetes significantly decreased Bcl-2 expression and exacerbated ischemia/reperfusion-induced caspase 3 activity and apoptosis formation. In this study, we demonstrated that, under diabetic condition, STZ-induced type 1 diabetes exacerbated ischemia/reperfusion-induced oxidative stress, BAG3 downregulation and proapoptotic mechanism leading to further aggravated cardiac injury.

    摘要 I Abstract III 縮寫表 V 目錄 VI 第一章 緒論 1 1.1 糖尿病流行病學 1 1.2 糖尿病分類 2 1.3 糖尿病症狀 2 1.4 糖尿病併發症 4 1.5 糖尿病心血管疾病 5 1.6 糖尿病心血管致病機轉 6 1.7 STZ糖尿病大鼠模式 7 1.8 STZ糖尿病心肌缺血再灌流傷害 8 1.9 BAG3心肌缺血再灌流傷害角色 10 1.10 研究動機 11 第二章 研究材料與方法 13 2.1 實驗動物 13 2.2 實驗動物分組 13 2.3 第一型糖尿病大鼠誘發方式 13 2.4 空腹血糖測量 14 2.5 24小時代謝籠 14 2.6 動物手術 15 2.7 心電圖測量 16 2.8 離體血管張力測定 16 2.9 心肌缺血再灌流手術 17 2.10 心臟表面血流微循環測定 17 2.11 西方墨點法 18 2.12 組織病理切片 20 2.13 免疫組織化學染色 20 2.14 TUNEL染色 22 2.15 MDA檢測 23 2.16 統計分析 23 第三章 結果 24 3.1 STZ誘發第一型糖尿病造成體重下降與高血糖 24 3.2 STZ誘發第一型糖尿病造成多吃、多飲與多尿 24 3.3 STZ誘發第一型糖尿病造成腎臟肥大與腎臟氧化壓力 25 3.4 STZ誘發第一型糖尿病對於腸繫膜阻力動脈的影響 26 3.5 STZ誘發第一型糖尿病加劇心肌缺血再灌流對於左心室功能的傷害 27 3.6 心肌缺血再灌流造成心肌細胞排列異常 28 3.7 STZ誘發第一型糖尿病加劇心肌缺血再灌流造成的氧化壓力與BAG3表現量下降 28 3.8 STZ誘發第一型糖尿病加劇心肌缺血再灌流造成的細胞凋亡 30 第四章 討論 32 第五章 結論 36 第六章 參考文獻 37 第七章 圖與表格 43 圖一 體重與空腹血糖值變化 43 圖二 24小時代謝籠飲水量、進食量、排尿量與糞便重量 44 圖三 腎臟重量與腎臟外觀代表圖 45 圖四 腎臟組織切片H&E染色 46 圖五 腎臟組織4-HNE西方墨點法分析 47 圖六 腎臟組織切片4-HNE IHC染色 48 圖七 腸繫膜阻力動脈收縮與舒張功能 49 圖八 心肌缺血再灌流左心室壓分析 50 圖九 心肌缺血再灌流心臟表面血流微循環變化 51 圖十 心臟組織切片H&E染色 52 圖十一 心臟組織MDA檢測 53 圖十二 心臟組織BAG3西方墨點法分析 54 圖十三 心臟組織切片BAG3 IHC染色 55 圖十四 心臟組織Bcl-2西方墨點法分析 56 圖十五 心臟組織切片Bcl-2 IHC染色 57 圖十六 心臟組織caspase 3西方墨點法分析 58 圖十七 心臟組織切片cleaved-caspase 3 IHC染色 59 圖十八 心臟組織PARP西方墨點法分析 60 圖十九 心臟組織切片TUNEL染色 61

    1. Organization WH. Global report on diabetes. 2016.
    2. Association AD. Economic costs of diabetes in the US in 2017. Diabetes care. 2018;41:917-928.
    3. Care D. Standards of Medical Care in Diabetes 2019. Diabetes Care. 2019;42:S81.
    4. Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR and Golden SH. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141:421-31.
    5. Gerstein HC, Islam S, Anand S, Almahmeed W, Damasceno A, Dans A, Lang CC, Luna MA, McQueen M, Rangarajan S, Rosengren A, Wang X and Yusuf S. Dysglycaemia and the risk of acute myocardial infarction in multiple ethnic groups: an analysis of 15,780 patients from the INTERHEART study. Diabetologia. 2010;53:2509-17.
    6. Gerstein HC, Pogue J, Mann JF, Lonn E, Dagenais GR, McQueen M, Yusuf S and investigators H. The relationship between dysglycaemia and cardiovascular and renal risk in diabetic and non-diabetic participants in the HOPE study: a prospective epidemiological analysis. Diabetologia. 2005;48:1749-55.
    7. Sena CM, Pereira AM and Seiça R. Endothelial dysfunction—a major mediator of diabetic vascular disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2013;1832:2216-2231.
    8. Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jimenez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER, 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB, American Heart Association Statistics C and Stroke Statistics S. Executive Summary: Heart Disease and Stroke Statistics--2016 Update: A Report From the American Heart Association. Circulation. 2016;133:447-54.
    9. Haffner SM, Lehto S, Rönnemaa T, Pyörälä K and Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. New England journal of medicine. 1998;339:229-234.
    10. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813.
    11. Schaffer SW, Jong CJ and Mozaffari M. Role of oxidative stress in diabetes-mediated vascular dysfunction: unifying hypothesis of diabetes revisited. Vascular pharmacology. 2012;57:139-149.
    12. Ramasamy R and Goldberg IJ. Aldose reductase and cardiovascular diseases, creating human-like diabetic complications in an experimental model. Circulation research. 2010;106:1449-1458.
    13. Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R and Dawnay A. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochemical Journal. 2003;375:581-592.
    14. Geraldes P and King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circulation research. 2010;106:1319-1331.
    15. Banerjee PS, Ma J and Hart GW. Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria. Proceedings of the National Academy of Sciences. 2015;112:6050-6055.
    16. Giacco F, Du X, Carratú A, Gerfen GJ, D’apolito M, Giardino I, Rasola A, Marin O, Divakaruni AS and Murphy AN. GLP-1 cleavage product reverses persistent ROS generation after transient hyperglycemia by disrupting an ROS-generating feedback loop. Diabetes. 2015;64:3273-3284.
    17. Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD and Cuadrado A. SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Molecular and cellular biology. 2011;31:1121-1133.
    18. Xue M, Rabbani N, Momiji H, Imbasi P, Anwar MM, Kitteringham N, Park BK, Souma T, Moriguchi T and Yamamoto M. Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation. Biochemical Journal. 2012;443:213-222.
    19. West E, Simon OR and Morrison E. Streptozotocin alters pancreatic beta-cell responsiveness to glucose within six hours of injection into rats. The West Indian medical journal. 1996;45:60-62.
    20. Elsner M, Guldbakke B, Tiedge M, Munday R and Lenzen S. Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetologia. 2000;43:1528-1533.
    21. Morgan NG, Cable HC, Newcombe NR and Williams GT. Treatment of cultured pancreatic B-cells with streptozotocin induces cell death by apoptosis. Bioscience reports. 1994;14:243-250.
    22. Turk J, Corbett JA, Ramanadham S, Bohrer A and McDaniel ML. Biochemical evidence for nitric oxide formation from streptozotocin in isolated pancreatic islets. Biochemical and biophysical research communications. 1993;197:1458-1464.
    23. Nukatsuka M, Sakurai H, Yoshimura Y, Nishida M and Kawada J. Enhancement by streptozotocin of O− 2 radical generation by the xanthine oxidase system of pancreatic β-cells. FEBS letters. 1988;239:295-298.
    24. Nukatsuka M, Yoshimura Y, Nishida M and Kawada J. Importance of the concentration of ATP in rat pancreatic β cells in the mechanism of streptozotocin-induced cytotoxicity. Journal of Endocrinology. 1990;127:161-165.
    25. McGovern PG, Pankow JS, Shahar E, Doliszny KM, Folsom AR, Blackburn H and Luepker RV. Recent trends in acute coronary heart disease—mortality, morbidity, medical care, and risk factors. New England Journal of Medicine. 1996;334:884-890.
    26. Marso SP, Miller T, Rutherford BD, Gibbons RJ, Qureshi M, Kalynych A, Turco M, Schultheiss HP, Mehran R and Krucoff MW. Comparison of myocardial reperfusion in patients undergoing percutaneous coronary intervention in ST-segment elevation acute myocardial infarction with versus without diabetes mellitus (from the EMERALD Trial). The American journal of cardiology. 2007;100:206-210.
    27. Engbersen R, Riksen NP, Mol MJ, Bravenboer B, Boerman OC, Meijer P, Oyen WJ, Tack C, Rongen GA and Smits P. Improved resistance to ischemia and reperfusion, but impaired protection by ischemic preconditioning in patients with type 1 diabetes mellitus: a pilot study. Cardiovascular diabetology. 2012;11:124.
    28. Przyklenk K, Maynard M, Greiner DL and Whittaker P. Cardioprotection with postconditioning: loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxidants & redox signaling. 2011;14:781-790.
    29. Li H, Liu Z, Wang J, Wong GT, Cheung C-W, Zhang L, Chen C, Xia Z and Irwin MG. Susceptibility to myocardial ischemia reperfusion injury at early stage of type 1 diabetes in rats. Cardiovascular diabetology. 2013;12:133.
    30. Wang T, Mao X, Li H, Qiao S, Xu A, Wang J, Lei S, Liu Z, Ng KF and Wong GT. N-Acetylcysteine and allopurinol up-regulated the Jak/STAT3 and PI3K/Akt pathways via adiponectin and attenuated myocardial postischemic injury in diabetes. Free Radical Biology and Medicine. 2013;63:291-303.
    31. Yin X, Zheng Y, Zhai X, Zhao X and Cai L. Diabetic inhibition of preconditioning-and postconditioning-mediated myocardial protection against ischemia/reperfusion injury. Experimental diabetes research. 2011;2012.
    32. Xue R, Lei S, Xia Z-y, Wu Y, Meng Q, Zhan L, Su W, Liu H, Xu J and Liu Z. Selective inhibition of PTEN preserves ischaemic post-conditioning cardioprotection in STZ-induced Type 1 diabetic rats: role of the PI3K/Akt and JAK2/STAT3 pathways. Clinical Science. 2016;130:377-392.
    33. Tao A, Xu X, Kvietys P, Kao R, Martin C and Rui T. Experimental diabetes mellitus exacerbates ischemia/reperfusion-induced myocardial injury by promoting mitochondrial fission: Role of down-regulation of myocardial Sirt1 and subsequent Akt/Drp1 interaction. Int J Biochem Cell Biol. 2018;105:94-103.
    34. Behl C. Breaking BAG: the co-chaperone BAG3 in health and disease. Trends in pharmacological sciences. 2016;37:672-688.
    35. Knezevic T, Myers VD, Gordon J, Tilley DG, Sharp TE, Wang J, Khalili K, Cheung JY and Feldman AM. BAG3: a new player in the heart failure paradigm. Heart failure reviews. 2015;20:423-434.
    36. Homma S, Iwasaki M, Shelton GD, Engvall E, Reed JC and Takayama S. BAG3 deficiency results in fulminant myopathy and early lethality. The American journal of pathology. 2006;169:761-773.
    37. Selcen D, Muntoni F, Burton BK, Pegoraro E, Sewry C, Bite AV and Engel AG. Mutation in BAG3 causes severe dominant childhood muscular dystrophy. Annals of neurology. 2009;65:83-89.
    38. Odgerel Z, Sarkozy A, Lee H-S, McKenna C, Rankin J, Straub V, Lochmüller H, Paola F, D’Amico A and Bertini E. Inheritance patterns and phenotypic features of myofibrillar myopathy associated with a BAG3 mutation. Neuromuscular disorders. 2010;20:438-442.
    39. Feldman AM, Begay RL, Knezevic T, Myers VD, Slavov DB, Zhu W, Gowan K, Graw SL, Jones KL and Tilley DG. Decreased levels of BAG3 in a family with a rare variant and in idiopathic dilated cardiomyopathy. Journal of cellular physiology. 2014;229:1697-1702.
    40. Feldman AM, Gordon J, Wang J, Song J, Zhang X-Q, Myers VD, Tilley DG, Gao E, Hoffman NE and Tomar D. BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes. Journal of molecular and cellular cardiology. 2016;92:10-20.
    41. Knezevic T, Myers VD, Su F, Wang J, Song J, Zhang X-Q, Gao E, Gao G, Madesh M and Gupta MK. Adeno-associated virus serotype 9–driven expression of BAG3 improves left ventricular function in murine hearts with left ventricular dysfunction secondary to a myocardial infarction. JACC: Basic to Translational Science. 2016;1:647-656.
    42. Su F, Myers VD, Knezevic T, Wang J, Gao E, Madesh M, Tahrir FG, Gupta MK, Gordon J and Rabinowitz J. Bcl-2–associated athanogene 3 protects the heart from ischemia/reperfusion injury. JCI insight. 2016;1.
    43. Tahrir FG, Knezevic T, Gupta MK, Gordon J, Cheung JY, Feldman AM and Khalili K. Evidence for the role of BAG3 in mitochondrial quality control in cardiomyocytes. Journal of cellular physiology. 2017;232:797-805.
    44. Lee YH, Chang JJ, Chien CT, Yang MC and Chien HF. Antioxidant sol-gel improves cutaneous wound healing in streptozotocin-induced diabetic rats. Exp Diabetes Res. 2012;2012:504693.
    45. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50:537-46.
    46. Qinna NA and Badwan AA. Impact of streptozotocin on altering normal glucose homeostasis during insulin testing in diabetic rats compared to normoglycemic rats. Drug Des Devel Ther. 2015;9:2515-25.
    47. Forbes JM, Coughlan MT and Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes. 2008;57:1446-1454.
    48. Zhang R, Thor D, Han X, Anderson L and Rahimian R. Sex differences in mesenteric endothelial function of streptozotocin-induced diabetic rats: a shift in the relative importance of EDRFs. Am J Physiol Heart Circ Physiol. 2012;303:H1183-98.
    49. Park S-H, Bahk J-H, Oh A-Y, Gil N-S, Huh J and Lee J-H. Gender difference and change of α1-adrenoceptors in the distal mesenteric arteries of streptozotocin-induced diabetic rats. Korean journal of anesthesiology. 2011;61:419.
    50. Ansley DM and Wang B. Oxidative stress and myocardial injury in the diabetic heart. J Pathol. 2013;229:232-41.
    51. Xia Z and Vanhoutte PM. Nitric oxide and protection against cardiac ischemia. Curr Pharm Des. 2011;17:1774-82.
    52. Galiñanes M and Fowler AG. Role of clinical pathologies in myocardial injury following ischaemia and reperfusion. Cardiovascular research. 2004;61:512-521.
    53. Yang W, Wu F, Luo T and Zhang Y. CCAAT/enhancer binding protein homologous protein knockdown alleviates hypoxia-induced myocardial injury in rat cardiomyocytes exposed to high glucose. Exp Ther Med. 2018;15:4213-4222.
    54. Pacher P and Szabo C. Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev. 2007;25:235-60.

    無法下載圖示 本全文未授權公開
    QR CODE