研究生: |
曹凱崴 Tsao, Kai-Wei |
---|---|
論文名稱: |
三級胺之氮取代基立體效應應用於鹵素鈣鈦礦電觸媒表面鈍化 Steric Effects of N-substitutes on Tertiary Amines for Surface Passivation of Halide Perovskite Electro-catalysts |
指導教授: |
李君婷
Li, Chun-Ting |
口試委員: |
李君婷
Li, Chun-Ting 趙宇強 Chao, Yu-Chiang 林建村 Lin, Jiann-T'suen |
口試日期: | 2023/06/20 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 71 |
中文關鍵詞: | 電催化劑 、鈣鈦礦 、自組裝單分子膜 、表面鈍化 |
英文關鍵詞: | Electro-catalyst, Perovskite, Self-assembled monolayer, Surface passivation |
DOI URL: | http://doi.org/10.6345/NTNU202300791 |
論文種類: | 學術論文 |
相關次數: | 點閱:287 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
成功製備具電催化效能之泡沫鎳(NF)/自組裝單分子層(SAM)/FA(Pb1-xGex)I3–surfactant鈣鈦礦電極,並應用於染料敏化太陽能電池(DSSC)中的高性能對電極。將不同的自組裝單分子層如ethane-1,2-diol (EDO)、ethane-1,2-dithiol (EDT)、ethane-1,2-diamine (EDA)、bezene-1,4-diol (BDO)、benzene-1,4-dithiol (BDT)、benzene-1,4-diamine (BDA)和6-mercaptopyridine-3-carboxylic acid (6-MNA)分別吸附在泡沫鎳上,之後將FA(Pb1-xGex)I3-THA前驅溶液滴在NF/SAM電極上,以建立泡沫鎳與FA(Pb1-xGex)I3薄膜間的電荷轉移途徑。當自組裝單分子層具有較小的乙烷橋時(EDA、EDO、EDT),能提供染敏電池較高的短路電流。反之當自組裝單分子層具有較大的苯橋時(BDA、BDO、BDT),其短路電流較低。基於同一苯橋或乙烷橋時,短路電流會隨著末端官能基與鈣鈦礦的配位強度提升而增加,由雙胺基(diamine)至雙羥基(diol)至雙硫醇基(dithiol)。填充因子會隨著自組裝單分子的溶解度上升而增加,由雙硫醇基(dithiol)至雙胺基(diamine)至雙羥基(diol)。引入不對稱的6-MNA可使羧基錨定在泡沫鎳上,以及硫醇基與鈣鈦礦薄膜良好配位,達到最佳的短路電流和填充因子。
通過使用多種鈍化劑,包括tri-n-hexylamine (THA, N(C6H13)3)、N,N-dihexylaniline (DHA, N(C6H5)(C6H13)2)、N-hexyl-N-phenylaniline (HPA, N(C6H5)2(C6H13)2)、triphenylamine (TPA, N(C6H5)3)、9-hexylcarbazole (HC, N(C12H8)(C6H13))、vinylcarbazole (VC, N(C12H8)(C2H3))、polyvinylcarbazole (PVC, (N(C12H8)(C2H3))n),製備各種FA(Pb1-xGex)I3–surfactants電極。所有鈣鈦礦電極在高於75%相對濕度中均表現出良好的α-FAPbI3結晶,並保持至少4個月良好的熱力學穩定性而沒有明顯的晶體分解。提升鈍化劑的苯基數量從0個苯基(THA)增加到1個苯基(DHA)、2個苯基(HPA)和3個苯基(TPA),可有效提升鉛與苯基的配位能力與表面疏水性,但苯環的堆疊使鈣鈦礦晶體變大的同時還降低了薄膜導電性和均勻性。提升鈍化劑的共軛特性由HPA至HC時,可增益與鉛的配位能力與電子傳輸能力。在含有carbazole的鈍化劑中,減少在氮取代基上的碳鏈長度會導致立體障礙減少與增加薄膜導電度。由最佳化的NF/6-MNA/FA(Pb1-xGex)I3-THA電極在一個太陽光下提供其染敏電池9.69%並在6000流明下提供25.38%的光電轉換效率,顯示出比白金電極(NF/Pt, 7.89%)更具競爭力的電催化性能。
Electrocatalytic perovskite electrodes of nickel foam (NF)/self-assembled monolayers (SAMs)/ FA(Pb1-xGex)I3-surfactants were successfully obtained and functioned as a high performance counter electrodes in dye-sensitized solar cells (DSSCs). With an intention to establish a facile charge-transfer pathway from a porous NF to a well-covered FA(Pb1-xGex)I3 thin film, various SAMs, ethane-1,2-diol (EDO), ethane-1,2-dithiol (EDT), ethane-1,2-diamine (EDA), bezene-1,4-diol (BDO), benzene-1,4-dithiol (BDT), benzene-1,4-diamine (BDA), and 6-mercaptopyridine-3-carboxylic acid (6-MNA), were adsorbed on NF by a dip-coating process. After that, a perovskite film of FA(Pb1-xGex)I3-THA was drop-coated on the electrodes of NF/SAMs. The SAMs having a smaller ethane bridge (EDA, EDO, and EDT) provided higher short-circuit current densities (JSC) to their DSSCs, compared to those with bulkier benzene bridges (BDA, BDO, and BDT). For the SAMs with the same bridge, the JSC values of the cells increased as the coordination strength between perovskite and the end group of the SAM increased, i.e., diamine < diol < dithiol. The FF values of the cells increased as the solubility of the SAM increased, i.e., dithiol < diamine < diol. An asymmetric SAM composed of 6-MNA had the best JSC and FF owing to the adhesive anchoring on NF by its carboxylic group and decent coordination to perovskite film by its thiol group.
Subsequently, various electrodes of NF/6-MNA/FA(Pb1-xGex)I3–surfactants were fabricated via using different amines, including tri-n-hexylamine (THA, N(C6H13)3), N,N-dihexylaniline (DHA N(C6H5)(C6H13)2), N-hexyl-N-phenylaniline (HPA, N(C6H5)2(C6H13)2), triphenylamine (TPA, N(C6H5)3), 9-hexylcarbazole (HC, N(C12H8)(C6H13)), vinylcarbazole (VC, N(C12H8)(C2H3)), and polyvinylcarbazole (PVC, (N(C12H8)(C2H3))n), as the surfactants. All the perovskite electrodes exhibited good α-FAPbI3 crystalline in ambient environment with a relative humidity higher than 75%, and maintain good thermodynamic stability for at least 4 months without significant crystal decomposition. Increasing the number of phenyl groups of surfactant from THA (0 phenyl), to DHA (1 phenyl), to HPA (2 phenyl), and to TPA (3 phenyl) enhanced the cation-π coordination and improved surface hydrophobicity; however, it caused the formation of larger perovskite particle and decreased the film conductivity/uniformity due to the stacking of benzene rings. Increasing the conjugation of a surfactant from HPA (2 phenyl) to HC (carbazole) enhanced the Pb-surfactant coordination and the charge transfer. Among the surfactants having carbazole, decreasing the carbons on N-substituents led to decreased steric hindrance and increased film conductivity. The optimal NF/6-MNA/FA(Pb1-xGex)I3–THA electrode had a decent cell power conversion efficiency of 9.69% at 1 sun and 25.38% in 6000 lux, showing a better electro-catalytic performance than the reference NF/Pt electrode (7.89%).
1. Nada, F. A.; Ahmed, G.; Ekram, H. E.-A., Perovskite Nanomaterials – Synthesis, Characterization, and Applications. In Perovskite Materials, Likun, P.; Guang, Z., Eds. IntechOpen: Rijeka, 2016; p Ch. 4.
2. Dai, T.; Cao, Q.; Yang, L.; Aldamasy, M. H.; Li, M.; Liang, Q.; Lu, H.; Dong, Y.; Yang, Y., Strategies for High-Performance Large-Area Perovskite Solar Cells toward Commercialization. Crystals 2021, 11 (3), 295.
3. Metz, P. Total Scattering Analysis of Disordered Nanosheet Materials. Alfred University, 2017.
4. Shi, E.; Gao, Y.; Finkenauer, B. P.; Akriti; Coffey, A. H.; Dou, L., Two-dimensional Halide Perovskite Nanomaterials and Heterostructures. Chemical Society Reviews 2018, 47 (16), 6046-6072.
5. Krautscheid, H.; Vielsack, F., Discrete and Polymeric Iodoplumbates with Pb3I10 Building Blocks: [Pb3I10]4–, [Pb7I22]8–, [Pb10I28]8–, 1∞[Pb3I10]4– and 2∞[Pb7I18]4–. Journal of the Chemical Society, Dalton Transactions 1999, (16), 2731-2735.
6. Wharf, I.; Gramstad, T.; Makhija, R.; Onyszchuk, M., Synthesis and Vibrational Spectra of Some Lead(II) Halide Adducts with O-, S-, and N-donor Atom Ligands. Canadian Journal of Chemistry 1976, 54 (21), 3430-3438.
7. Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G., Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. Journal of the American Chemical Society 2015, 137 (27), 8696-8699.
8. Lee, J.-W.; Dai, Z.; Lee, C.; Lee, H. M.; Han, T.-H.; De Marco, N.; Lin, O.; Choi, C. S.; Dunn, B.; Koh, J.; Di Carlo, D.; Ko, J. H.; Maynard, H. D.; Yang, Y., Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar Cells via Adduct Approach. Journal of the American Chemical Society 2018, 140 (20), 6317-6324.
9. Cao, X.; Zhi, L.; Li, Y.; Fang, F.; Cui, X.; Yao, Y.; Ci, L.; Ding, K.; Wei, J., Control of the Morphology of PbI2 Films for Efficient Perovskite Solar Cells by Strong Lewis Base Additives. Journal of Materials Chemistry C 2017, 5 (30), 7458-7464.
10. Lee, J.-W.; Kim, H.-S.; Park, N.-G., Lewis Acid–Base Adduct Approach for High Efficiency Perovskite Solar Cells. Accounts of Chemical Research 2016, 49 (2), 311-319.
11. Boyd, C. C.; Cheacharoen, R.; Leijtens, T.; McGehee, M. D., Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chemical Reviews 2019, 119 (5), 3418-3451.
12. Rajagopal, A.; Yao, K.; Jen, A. K. Y., Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering. Advanced Materials 2018, 30 (32), 1800455.
13. Fu, Q.; Tang, X.; Huang, B.; Hu, T.; Tan, L.; Chen, L.; Chen, Y., Recent Progress on the Long-Term Stability of Perovskite Solar Cells. Advanced Science 2018, 5 (5), 1700387.
14. Kim, D.; Lee, D.-K.; Kim, S. M.; Park, W.; Sim, U., Photoelectrochemical Water Splitting Reaction System Based on Metal-Organic Halide Perovskites. Materials 2020, 13 (1), 210.
15. Aristidou, N.; Sanchez-Molina, I.; Chotchuangchutchaval, T.; Brown, M.; Martinez, L.; Rath, T.; Haque, S. A., The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. Angewandte Chemie 2015, 54 (28), 8208-8212.
16. Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A., Fast Oxygen Diffusion and Iodide Defects Mediate Oxygen-induced Degradation of Perovskite Solar Cells. Nature Communications 2017, 8 (1), 15218.
17. Lee, S.-W.; Kim, S.; Bae, S.; Cho, K.; Chung, T.; Mundt, L. E.; Lee, S.; Park, S.; Park, H.; Schubert, M. C.; Glunz, S. W.; Ko, Y.; Jun, Y.; Kang, Y.; Lee, H.-S.; Kim, D., UV Degradation and Recovery of Perovskite Solar Cells. Scientific Reports 2016, 6 (1), 38150.
18. Ji, J.; Liu, X.; Jiang, H.; Duan, M.; Liu, B.; Huang, H.; Wei, D.; Li, Y.; Li, M., Two-Stage Ultraviolet Degradation of Perovskite Solar Cells Induced by the Oxygen Vacancy-Ti4+ States. iScience 2020, 23 (4), 101013.
19. Meng, Q.; Chen, Y.; Xiao, Y. Y.; Sun, J.; Zhang, X.; Han, C. B.; Gao, H.; Zhang, Y.; Yan, H., Effect of Temperature on the Performance of Perovskite Solar Cells. Journal of Materials Science: Materials in Electronics 2021, 32 (10), 12784-12792.
20. Azpiroz, J. M.; Mosconi, E.; Bisquert, J.; De Angelis, F., Defect Migration in Methylammonium Lead Iodide and Its Role in Perovskite Solar Cell Operation. Energy & Environmental Science 2015, 8 (7), 2118-2127.
21. Akin, S.; Dong, B.; Pfeifer, L.; Liu, Y.; Graetzel, M.; Hagfeldt, A., Organic Ammonium Halide Modulators as Effective Strategy for Enhanced Perovskite Photovoltaic Performance. Advanced Science 2021, 8 (10), 2004593.
22. Hu, W.; Yang, S.; Yang, S., Surface Modification of TiO2 for Perovskite Solar Cells. Trends in Chemistry 2020, 2 (2), 148-162.
23. Chen, Q.; Zhou, H.; Song, T.-B.; Luo, S.; Hong, Z.; Duan, H.-S.; Dou, L.; Liu, Y.; Yang, Y., Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells. Nano Letters 2014, 14 (7), 4158-4163.
24. Moriya, M.; Hirotani, D.; Ohta, T.; Ogomi, Y.; Shen, Q.; Ripolles, T. S.; Yoshino, K.; Toyoda, T.; Minemoto, T.; Hayase, S., Architecture of the Interface between the Perovskite and Hole-Transport Layers in Perovskite Solar Cells. ChemSusChem 2016, 9 (18), 2634-2639.
25. Wang, C.; Zhao, D.; Yu, Y.; Shrestha, N.; Grice, C. R.; Liao, W.; Cimaroli, A. J.; Chen, J.; Ellingson, R. J.; Zhao, X.; Yan, Y., Compositional and Morphological Engineering of Mixed Cation Perovskite Films for Highly Efficient Planar and Flexible Solar Cells with Reduced Hysteresis. Nano Energy 2017, 35, 223-232.
26. Jacobsson, T. J.; Correa-Baena, J.-P.; Halvani Anaraki, E.; Philippe, B.; Stranks, S. D.; Bouduban, M. E. F.; Tress, W.; Schenk, K.; Teuscher, J.; Moser, J.-E.; Rensmo, H.; Hagfeldt, A., Unreacted PbI2 as a Double-Edged Sword for Enhancing the Performance of Perovskite Solar Cells. Journal of the American Chemical Society 2016, 138 (32), 10331-10343.
27. Chen, Q.; Zhou, H.; Fang, Y.; Stieg, A. Z.; Song, T.-B.; Wang, H.-H.; Xu, X.; Liu, Y.; Lu, S.; You, J.; Sun, P.; McKay, J.; Goorsky, M. S.; Yang, Y., The Optoelectronic Role of Chlorine in CH3NH3PbI3(Cl)-based Perovskite Solar Cells. Nature Communications 2015, 6 (1), 7269.
28. Xu, F.; Zhang, T.; Li, G.; Zhao, Y., Synergetic Effect of Chloride Doping and CH3NH3PbCl3 on CH3NH3PbI3−xClx Perovskite-Based Solar Cells. ChemSusChem 2017, 10 (11), 2365-2369.
29. Ibrahim Dar, M.; Abdi-Jalebi, M.; Arora, N.; Moehl, T.; Grätzel, M.; Nazeeruddin, M. K., Understanding the Impact of Bromide on the Photovoltaic Performance of CH3NH3PbI3 Solar Cells. Advanced Materials 2015, 27 (44), 7221-7228.
30. Zhao, W.; Xu, J.; He, K.; Cai, Y.; Han, Y.; Yang, S.; Zhan, S.; Wang, D.; Liu, Z.; Liu, S., A Special Additive Enables All Cations and Anions Passivation for Stable Perovskite Solar Cells with Efficiency over 23%. Nano-Micro Letters 2021, 13 (1), 169.
31. Xu, Y.; Huang, Y.; Zhong, H.; Li, W.; Cao, D.; Zhang, C.; Bao, H.; Guo, Z.; Wan, L.; Zhang, X.; Zhang, X.; Li, Y.; Wang, X.; Eder, D.; Wang, S., Enhanced Performance and Stability of Carbon Counter Electrode-Based MAPbI3 Perovskite Solar Cells with p-Methylphenylamine Iodate Additives. ACS Applied Energy Materials 2021, 4 (10), 11314-11324.
32. He, Z.; Zhou, Y.; Xu, C.; Su, Y.; Liu, A.; Li, Y.; Gao, L.; Ma, T., Mechanism of Enhancement in Perovskite Solar Cells by Organosulfur Amine Constructed 2D/3D Heterojunctions. The Journal of Physical Chemistry C 2021, 125 (30), 16428-16434.
33. Chen, B.; Rudd, P. N.; Yang, S.; Yuan, Y.; Huang, J., Imperfections and Their Passivation in Halide Perovskite Solar Cells. Chemical Society Reviews 2019, 48 (14), 3842-3867.
34. Ulman, A., Formation and Structure of Self-Assembled Monolayers. Chemical Reviews 1996, 96 (4), 1533-1554.
35. Li, Y.; Ji, L.; Liu, R.; Zhang, C.; Mak, C. H.; Zou, X.; Shen, H.-H.; Leu, S.-Y.; Hsu, H.-Y., A Review on Morphology Engineering for Highly Efficient and Stable Hybrid Perovskite Solar Cells. Journal of Materials Chemistry A 2018, 6 (27), 12842-12875.
36. Yang, G.; Wang, C.; Lei, H.; Zheng, X.; Qin, P.; Xiong, L.; Zhao, X.; Yan, Y.; Fang, G., Interface Engineering in Planar Perovskite Solar Cells: Energy Level Alignment, Perovskite Morphology Control and High Performance Achievement. Journal of Materials Chemistry A 2017, 5 (4), 1658-1666.
37. Willenbockel, M.; Lüftner, D.; Stadtmüller, B.; Koller, G.; Kumpf, C.; Soubatch, S.; Puschnig, P.; Ramsey, M. G.; Tautz, F. S., The Interplay between Interface Structure, Energy Level Alignment and Chemical Bonding Strength at Organic–metal Interfaces. Physical Chemistry Chemical Physics 2015, 17 (3), 1530-1548.
38. Holmes, C.; Tabrizian, M., Chapter 14 - Surface Functionalization of Biomaterials. In Stem Cell Biology and Tissue Engineering in Dental Sciences, Vishwakarma, A.; Sharpe, P.; Shi, S.; Ramalingam, M., Eds. Academic Press: Boston, 2015; 187-206.
39. Wolff, C. M.; Canil, L.; Rehermann, C.; Ngoc Linh, N.; Zu, F.; Ralaiarisoa, M.; Caprioglio, P.; Fiedler, L.; Stolterfoht, M.; Kogikoski, S., Jr.; Bald, I.; Koch, N.; Unger, E. L.; Dittrich, T.; Abate, A.; Neher, D., Perfluorinated Self-Assembled Monolayers Enhance the Stability and Efficiency of Inverted Perovskite Solar Cells. ACS Nano 2020, 14 (2), 1445-1456.
40. Liu, L.; Mei, A.; Liu, T.; Jiang, P.; Sheng, Y.; Zhang, L.; Han, H., Fully Printable Mesoscopic Perovskite Solar Cells with Organic Silane Self-Assembled Monolayer. Journal of the American Chemical Society 2015, 137 (5), 1790-1793.
41. Dai, Z.; Yadavalli, S. K.; Chen, M.; Abbaspourtamijani, A.; Qi, Y.; Padture, N. P., Interfacial Toughening with Self-assembled Monolayers Enhances Perovskite Solar Cell Reliability. Science 2021, 372 (6542), 618-622.
42. Najm, A. S.; Alwash, S. A.; Sulaiman, N. H.; Chowdhury, M. S.; Techato, K., N719 Dye as a Sensitizer for Dye-sensitized Solar Cells (DSSCs): A Review of Its Functions and Certain Rudimentary Principles. Environmental Progress & Sustainable Energy 2023, 42 (1), e13955.
43. Iftikhar, H.; Sonai, G. G.; Hashmi, S. G.; Nogueira, A. F.; Lund, P. D., Progress on Electrolytes Development in Dye-Sensitized Solar Cells. Materials 2019, 12 (12), 1998.
44. Listorti, A.; O’Regan, B.; Durrant, J. R., Electron Transfer Dynamics in Dye-Sensitized Solar Cells. Chemistry of Materials 2011, 23 (15), 3381-3399.
45. Zhong, R.-J.; Tsao, K.-W.; Cheng, C.-H.; Liu, C.-C.; Li, C.-T., Surfactant Effects on Electrochemically Durable Lead Halide Perovskite Electro-catalysts. Dalton Transactions 2023, 52, 5956-5968.
46. Conner, G. R., Combination Analysis of Metal Oxides Using ESCA, AES, and SIMS. Journal of Vacuum Science and Technology 1978, 15 (2), 343-347.
47. Dubé, C. E.; Workie, B.; Kounaves, S. P.; Robbat, A.; Aksub, M. L.; Davies, G., Electrodeposition of Metal Alloy and Mixed Oxide Films Using a Single‐Precursor Tetranuclear Copper‐Nickel Complex. Journal of The Electrochemical Society 1995, 142 (10), 3357.
48. Schreifels, J. A.; Maybury, P. C.; Swartz, W. E., X-Ray Photoelectron Spectroscopy of Nickel Boride Catalysts: Correlation of Surface States with Reaction Products in the Hydrogenation of Acrylonitrile. Journal of Catalysis 1980, 65 (1), 195-206.
49. Kim, K. S.; Winograd, N., X-ray Photoelectron Spectroscopic Studies of Nickel-oxygen Surfaces Using Oxygen and Argon Ion-bombardment. Surface Science 1974, 43 (2), 625-643.
50. Mansour, A. N., Characterization of NiO by XPS. Surface Science Spectra 1994, 3 (3), 231-238.
51. Salvati, L., Jr.; Makovsky, L. E.; Stencel, J. M.; Brown, F. R.; Hercules, D. M., Surface Spectroscopic Study of Tungsten-alumina Catalysts Using X-ray Photoelectron, Ion Scattering, and Raman Spectroscopies. The Journal of Physical Chemistry 1981, 85 (24), 3700-3707.
52. Li, C. P.; Proctor, A.; Hercules, D. M., Curve Fitting Analysis of ESCA Ni 2p Spectra of Nickel-Oxygen Compounds and Ni/Al2O3 Catalysts. Applied Spectroscopy 1984, 38 (6), 880-886.
53. Klein, J. C.; Hercules, D. M., Surface Characterization of Model Urushibara Catalysts. Journal of Catalysis 1983, 82 (2), 424-441.
54. Venezia, A. M.; Bertoncello, R.; Deganello, G., X-ray Photoelectron Spectroscopy Investigation of Pumice-supported Nickel Catalysts. Surface and interface 1995, 23 (4), 239-247.
55. van der Heide, H.; Hemmel, R.; van Bruggen, C. F.; Haas, C., X-ray Photoelectron Spectra of 3d Transition Metal Pyrites. Journal of Solid State Chemistry 1980, 33 (1), 17-25.
56. Tooru, Y.; Kiyoshi, Y., The Core-level Binding Energies and the Structures of Nickel Complexes. Bulletin of the Chemical Society of Japan 1981, 54 (3), 935-936.
57. Marcus, P.; Grimal, J. M., The Anodic Dissolution and Passivation of NiCrFe Alloys Studied by ESCA. Corrosion Science 1992, 33 (5), 805-814.
58. Shalvoy, R. B.; Reucroft, P. J.; Davis, B. H., Characterization of Coprecipitated Nickel on Silica Methanation Catalysts by X-ray Photoelectron Spectroscopy. Journal of Catalysis 1979, 56 (3), 336-348.
59. Bolt, P. H.; ten Grotenhuis, E.; Geus, J. W.; Habraken, F. H. P. M., The Interaction of Thin NiO Layers with Single Crystalline α-Al2O3(112̄0) Substrates. Surface Science 1995, 329 (3), 227-240.
60. Dickinson, T.; Povey, A. F.; Sherwood, P. M. J. J. o. t. C. S., Faraday Transactions 1: Physical Chemistry in Condensed Phases, Dissolution and Passivation of Nickel. An X-ray Photoelectron Spectroscopic Study. Journal of the Chemical Society, Faraday Transactions 1 1977, 73, 327-343.
61. Doren, A.; Genet, M. J.; Rouxhet, P. G., Analysis of Poly(Ethylene Terephthalate) (PET) by XPS. Surface Science Spectra 1994, 3 (4), 337-341.
62. Strohmeier, B. R., Evaluation of Polymeric Standard Reference Materials for Monitoring the Performance of X-ray Photoelectron Spectrometers. Applied Surface Science 1991, 47 (3), 225-234.
63. Terlingen, J. G. A.; Feijen, J.; Hoffman, A. S., Immobilization of Surface Active Compounds on Polymer Supports Using Glow Discharge Processes: 1. Sodium Dodecyl Sulfate on Poly(propylene). Journal of Colloid and Interface Science 1993, 155 (1), 55-65.
64. Wagner, C. D.; Taylor, J. A., Generation of XPS Auger Lines by Bremsstrahlung. Journal of Electron Spectroscopy and Related Phenomena 1980, 20 (1), 83-93.
65. Rufael, T.; Huntley, D.; Mullins, D.; Gland, J. J. T. J. o. P. C., Methyl thiolate on Ni (111): multiple adsorption sites and mechanistic implications. The Journal of Physical Chemistry 1995, 99 (29), 11472-11480.
66. Jasper, I.; Valério, T. L.; Klobukoski, V.; Pesqueira, C. M.; Massaneiro, J.; Camargo, L. P.; Dall’ Antonia, L. H.; Vidotti, M., Electrocatalytic and Photoelectrocatalytic Sensors Based on Organic, Inorganic, and Hybrid Materials: A Review. Chemosensors 2023, 11 (5), 261.
67. Draxl, C.; Nabok, D.; Hannewald, K., Organic/Inorganic Hybrid Materials: Challenges for ab Initio Methodology. Accounts of Chemical Research 2014, 47 (11), 3225-3232.
68. Wu, T.; Li, X.; Qi, Y.; Zhang, Y.; Han, L., Defect Passivation for Perovskite Solar Cells: from Molecule Design to Device Performance. ChemSusChem 2021, 14 (20), 4354-4376.
69. Tang, R.; Zhou, S.; Xiang, W.; Xie, Y.; Chen, H.; Peng, Q.; Yu, G.; Liu, B.; Zeng, H.; Li, Q.; Li, Z., New “X-type” Second-order Nonlinear Optical (NLO) Dendrimers: Fewer Chromophore Moieties and High NLO Effects. Journal of Materials Chemistry C 2015, 3 (17), 4545-4552.
70. Aghazada, S.; Ren, Y.; Wang, P.; Nazeeruddin, M. K., Effect of Donor Groups on the Performance of Cyclometalated Ruthenium Sensitizers in Dye-Sensitized Solar Cells. Inorganic Chemistry 2017, 56 (21), 13437-13445.
71. Zheng, Z.; Wang, S.; Hu, Y.; Rong, Y.; Mei, A.; Han, H., Development of Formamidinium Lead Iodide-based Perovskite Solar Cells: Efficiency and Stability. Chemical Science 2022, 13 (8), 2167-2183.
72. Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G., Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorganic Chemistry 2013, 52 (15), 9019-9038.
73. Tang, J.; Tian, W.; Zhao, C.; Sun, Q.; Zhang, C.; Cheng, H.; Shi, Y.; Jin, S., Imaging the Moisture-Induced Degradation Process of 2D Organolead Halide Perovskites. ACS Omega 2022, 7 (12), 10365-10371.
74. Zhang, F.; Kim, D. H.; Lu, H.; Park, J.-S.; Larson, B. W.; Hu, J.; Gao, L.; Xiao, C.; Reid, O. G.; Chen, X.; Zhao, Q.; Ndione, P. F.; Berry, J. J.; You, W.; Walsh, A.; Beard, M. C.; Zhu, K., Enhanced Charge Transport in 2D Perovskites via Fluorination of Organic Cation. Journal of the American Chemical Society 2019, 141 (14), 5972-5979.
75. Zheng, K.; Pullerits, T., Two Dimensions Are Better for Perovskites. The Journal of Physical Chemistry Letters 2019, 10 (19), 5881-5885.
76. Leung, T. L.; Ahmad, I.; Syed, A. A.; Ng, A. M. C.; Popović, J.; Djurišić, A. B., Stability of 2D and Quasi-2D Perovskite Materials and Devices. Communications Materials 2022, 3 (1), 63.
77. Dessimoz, M.; Yoo, S.-M.; Kanda, H.; Igci, C.; Kim, H.; Nazeeruddin, M. K., Phase-Pure Quasi-2D Perovskite by Protonation of Neutral Amine. The Journal of Physical Chemistry Letters 2021, 12 (46), 11323-11329.
78. Li, Y.; Ji, C.; Li, L.; Wang, S.; Han, S.; Peng, Y.; Zhang, S.; Luo, J., (γ-Methoxy propyl amine)2PbBr4: a novel two-dimensional halide hybrid perovskite with efficient bluish white-light emission. Inorganic Chemistry Frontiers 2021, 8 (8), 2119-2124.
79. Zhu, T.; Shen, L.; Chen, H.; Yang, Y.; Zheng, L.; Chen, R.; Zheng, J.; Wang, J.; Gong, X., Conjugated molecule based 2D perovskites for high-performance perovskite solar cells. Journal of Materials Chemistry A 2021, 9 (38), 21910-21917.
80. Lee, J.-W.; Dai, Z.; Han, T.-H.; Choi, C.; Chang, S.-Y.; Lee, S.-J.; De Marco, N.; Zhao, H.; Sun, P.; Huang, Y.; Yang, Y., 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nature Communications 2018, 9 (1), 3021.
81. Imran, M.; Khan, N. A., Perovskite Phase Formation Informamidinium–methylammonium Lead Iodide Bromide (FAPbI3)1-x(MAPbBr3)x Materials and Their Morphological, Optical and Photovoltaic Properties. Applied Physics A 2019, 125 (8), 575.
82. Salim, K. M. M.; Masi, S.; Gualdrón-Reyes, A. F.; Sánchez, R. S.; Barea, E. M.; Kreĉmarová, M.; Sánchez-Royo, J. F.; Mora-Seró, I., Boosting Long-Term Stability of Pure Formamidinium Perovskite Solar Cells by Ambient Air Additive Assisted Fabrication. ACS Energy Letters 2021, 6 (10), 3511-3521.
83. Maniyarasu, S.; Ke, J. C.-R.; Spencer, B. F.; Walton, A. S.; Thomas, A. G.; Flavell, W. R., Role of Alkali Cations in Stabilizing Mixed-Cation Perovskites to Thermal Stress and Moisture Conditions. ACS Applied Materials & Interfaces 2021, 13 (36), 43573-43586.
84. Elsayed, M. R. A.; Elseman, A. M.; Abdelmageed, A. A.; Hashem, H. M.; Hassen, A., Synthesis and numerical simulation of formamidinium-based perovskite solar cells: a predictable device performance at NIS-Egypt. Scientific Reports 2023, 13 (1), 10115.
85. Philippe, B.; Park, B.-W.; Lindblad, R.; Oscarsson, J.; Ahmadi, S.; Johansson, E. M. J.; Rensmo, H., Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures—A Photoelectron Spectroscopy Investigation. Chemistry of Materials 2015, 27 (5), 1720-1731.
86. He, X.; Wang, M.; Cao, F.; Tian, W.; Li, L., Hydrophobic Long Alkyl Chain Organic Cations Induced 2D/3D Heterojunction for Efficient and Stable Perovskite Solar Cells. Journal of Materials Science & Technology 2022, 124, 243-251.
87. Juang, S. S.-Y.; Lin, P.-Y.; Lin, Y.-C.; Chen, Y.-S.; Shen, P.-S.; Guo, Y.-L.; Wu, Y.-C.; Chen, P., Energy Harvesting Under Dim-Light Condition With Dye-Sensitized and Perovskite Solar Cells. Frontiers in Chemistry 2019, 7, 1-9.