研究生: |
吳佳起 |
---|---|
論文名稱: |
函數單元學習前後的概念成長探討 |
指導教授: | 張幼賢 |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 138 |
中文關鍵詞: | 函數 、層次 、錯誤類型 、迷思概念 |
英文關鍵詞: | function, phase, type of errors, misconception |
論文種類: | 學術論文 |
相關次數: | 點閱:313 下載:41 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的主要目的在於探討國二學生在函數的單元學習前後,其函數概念層次的變化情形,並探討學生的錯誤類型與迷思概念。
本研究的研究對象為台北市與基隆市各一所公立國中,其中的二年級學生各兩班(均為常態分配),共計146人。研究者依據Anna Sfard的概念發展理論,將函數概念分類成「內化」、「壓縮」、「物化」三個層次,自行設計編製測驗卷,並在教學單元「一次函數及其圖形」教學前後分別進行紙筆測驗,然後加以分析,期能瞭解學生在學習前後,其函數概念層次的成長及變化情形,並歸納出學生的學習錯誤類型;再者,從中抽取樣本加以訪談,以求更能深入瞭解學生的想法、作答原因及探討出學生的迷思概念。
本研究的發現如下:
一、 在學生初次學習函數的概念前、後,其函數概念有顯著的不同。
二、 函數單元的學習,最有助於「壓縮」層次的學生進階到「物化」層次。
三、 學生存在著許多錯誤類型。如:自變數與應變數的角色混淆顛倒、將y = ax + b中的b當成x截距、平移時移動方向與加減號的混淆等。
四、 學生存在著許多關於函數的迷思概念。如:可以寫出關係式的就是函數、只有型如y = ax + b者才是函數、數值要有規律的增加,才是函數關係等。
五、 就前、後測中相同的題目進行分析,學生在學習函數單元之後,答對率確有明顯的提升。
最後根據本研究的結果加以討論,提出結論與若干教學建議,衷心希望可供教師在其教學呈現及教材編排上作為參考,而對學生的學習有所助益,並對未來研究者提供一些建議。
關鍵字:函數、層次、錯誤類型、迷思概念
The main purpose of this research is to investigate the change in the phases of junior high students’ conception about the function before and after the unit learning of function, as well as to investigate the students’ types of errors and misconception.
The objects of this research were the second graders of two public junior high schools in Taipei City and Keelung City, each school two classes (where students were normally allotted), totally 146 students. The researcher adopted Anna Sfard’s theory of conceptual development and divided the conception of function into three phases – “interiorization”, “condensation”, and “reification.” The researcher also designed the tests and gave the students the written tests before and after the teaching of “the function of the first degree and its graph.” Then, analysis was made in order to get a better knowledge of the development and change in the phases of students’ conception about function before and after the learning, and to sum up the students’ types of errors in learning. Furthermore, some students were chosen to have an interview, for the purpose of further understanding the students’ way of thinking and reasons for answers and figuring out their misconception.
The findings of this research are shown below:
1. There was a significant difference in the students’ conception about function before and after their learning the concept of function for the first time.
2. The unit learning of function was very helpful for the students to upgrade from the phase of “condensation” to the phase of “reification.”
3. There were many types of errors among the students. For example, independent variables and dependent variables were confused, the b in the y=ax+b was taken as the x distance, and the moving direction at the horizontal displacement was confused with the plus and minus marks, etc.
4. Students had different misconceptions about function. For example, when a relative equation could be acquired, it was a function. Only the one with a pattern like y=ax+b was a function. Function relation should have a regular increase of value.
5. According to the analysis made on the same test questions before and after the learning, it was found out that there was a significant increase in the rate of answering correctly after the students learned the unit of function.
Finally, the results of this research were discussed to present the conclusion and several teaching suggestions, in the hope that teachers could use them for reference in their teaching and preparing the teaching materials. It was also the researcher’s hope that this study could help students in their learning process and offer good ideas for future researchers.
Key words: function, phase, type of errors, misconception.
一、中文部分
Cole, K. C. (2000),The Universe and the Teacup: The Mathematics of Truth and Beauty. 丘宏義譯(民89),數學與頭腦相遇的地方,頁7-13。台北,天下遠見出版。
Skemp, R. R.(1987),The psychology of Learning Mathematics. 陳澤民譯(民84),數學學習心理學。台北,九章出版社。
Schwarzenberger (1984),英國數學學會會長致詞。數學圈,第21期,頁73-80。
丁斌悅(民91),國二學生學習線型函數時的概念表徵發展研究。台北,國立台灣師範大學數學研究所碩士論文。
尤正成(民84),關於函數教學的數學知識—以國中數學實習教師為例。彰化,國立彰化師範大學科學教育研究所碩士論文。
余民寧(民88),有意義的學習—概念構圖之研究。台北,商鼎文化出版社。
呂溪木(民74),從國際科展看我國今後課學教育發展的方向。科學教育月刊,第64期,頁1319。
李嘉淦(民81),基礎解題策略—以簡單的數學為例。科學教育月刊,第153期,頁13。
李約瑟著,傅溥譯(民69),中國之科學與文明(第四冊),頁291-298。台北,台灣商務印書館。
吳玫瑤(民90),教學對高中生學習函數概念的影響。台北,國立台灣師範大學數學研究所碩士論文。
吳淑琳(民90),國中生線型函數概念發展之個案研究。台北,國立台灣師範大學數學研究所碩士論文。
林福來(民80),數學的診斷評量。教師天地,第54期,頁32-38。
林清山(民81),心理與教育統計學。台北,東華書局。
林文俊(民91),線型函數概念在國中數學課程中發展的脈絡。台北,國立台灣師範大學數學研究所碩士論文。
邱芳津(民79),國二資優生線型函數概念之研究。彰化,國立彰化師範大學科學教育研究所碩士論文。
國立編譯館主編(民89a),國民中學數學第一冊。台北,國立編譯館。
國立編譯館主編(民90a),國民中學數學第二冊。台北,國立編譯館。
國立編譯館主編(民89b),國民中學數學第三冊。台北,國立編譯館。
國立編譯館主編(民90b),國民中學數學第四冊。台北,國立編譯館。
國立編譯館主編(民90c),國民中學數學第五冊。台北,國立編譯館。
國立編譯館主編(民90d),國民中學數學第六冊。台北,國立編譯館。
國立編譯館主編(民89c),國民中學選修數學第一冊。台北,國立編譯館。
國立編譯館主編(民89d),國民中學選修數學第二冊。台北,國立編譯館。
國立編譯館主編(民90e),國民中學選修數學第三冊。台北,國立編譯館。
國立編譯館主編(民90f),國民中學選修數學第四冊。台北,國立編譯館。
國立編譯館主編(民89e),國民中學選修數學第五冊。台北,國立編譯館。
國立編譯館主編(民89f),國民中學選修數學第六冊。台北,國立編譯館。
曹亮吉(民89),函數觀念的演變史。科學月刊,第十五卷,第十二期。
梁淑坤(民85),研究與教學合一:以分析「一元二次方程式」的錯誤為一個例子。嘉義師範學報,第10期,頁455-472。
郭生玉(民84),心理與教育測驗。台北,精華書局。
郭汾派、林光賢及林福來(民78),國中生文字符號概念的發展。國科會專題研究計畫報告。NSC76-0111-S003-08;NSC77-0111-S003-05A。
陳忠志(民89),科學概念評量。高雄,高師大科教中心承辦八十九年度南區中學數理科評量理論與實作研討會論文。
陳盈言(民90),國二學生變數概念的成熟度對函數概念發展的影響之研究。台北,國立台灣師範大學數學研究所碩士論文。
張春興、林清山(民62),教育心理學。台北,文景書局。
黃台珠(民74),概念的研究及其意義。科學發展月刊,第46期,頁165-177。
楊弢亮(民81),中學數學教學法通論。台北,九章出版社。
鄭維誠 (民91),線型函數的學習對國二學生變數概念發展的影響。台北,國立台灣師範大學數學研究所碩士論文。
謝豐瑞(民86),國中數學新課程精神與特色。科學教育月刊,第199期,頁45-55。台北,國立台灣師範大學科學教育中心。
謝豐瑞、陳材河(民86),函數的一生。科學教育月刊,第199期,頁34-43。
顏啟麟,羅昭強(民82),國中生函數概念認知發展與教學之研究(I)(II)。行政院國家科學委員會專題研究計畫期中報告。
二、英文部分
Anderson, J. R. & Jeffries (1985). Novice Lisp Errors: Undetected Losses of Information from Working Memory. Human-Computer Interaction, 1, 107-131.
Bell, A. (1993). Guest Editorial. Educational Studies in Mathematics, 24, 1-4.
Booth, L. R. (1981). Child-Method in Secondary Mathematics. Educational Studies in Mathematics, 12, 29-40.
Brown, J. S. & Vanlehn, K. (1980). Repair Theory: A Generative Theory of Bugs in Procedural Skills. Cognitive Science, 4, 379-426.
Bruner, J. S. (1973). Organization of Early Skilled Action. Child Development, 44, 667-676.
Dreyfus, T. & Eisenberg, T. (1982). Intuitive Functional Concepts: A Baseline Study on Intuitions. Journal for Research in Mathematics Education, 13(5), 360-380.
Dreyfus, T. (1984). Intuitions on Functions. Journal of Experimental Education, 52, 77-85.
Eisenberg, T. (1991). Functions and Associated Learning Difficulties. In David Tall(Ed.): Advanced Mathematical Thinking ,140-152. Kluwer Academic Publishers.
Hart, K. (1981). Hierarchies in Mathematics Education. Educational Studies in On Mathematics. Educational Studies in Mathematics, 12, 205-128.
Gagne, R. M. (1970). The Condition of Learning. N.Y.: Holt, Rinehart & Winston .
Goodman, N. D. (1979). Mathematics as an Objective Science. American Mathematical Monthly, Aug. - Sept.
Kieren, T. (1990). Understanding for Teaching for Understanding. The Alberta Journal of Educational Research, 36(3), 191-201.
Kieren, T. & Pirie, S. (1992). The Answer Determines the Question. Interventions and the Growth of Mathematical Understanding. PME16(1), 1-8.
Klausmeier, H. J. & Frayer, D. A. & Ghatala, E.S. (1974). Conceptual Learning and Development. N. Y.: Academic Press.
Loftus, E.F.& Suppes, P. (1972). Structural Variables that Determine Problem-solving Difficulty in Computer Assisted Instruction. Journal of Educational Psychology, 63, 531-542.
Marshall, S. P. (1983). Schema Knowledge Structures for Representing and Understanding Arithmetic Story Problem. First year technical report, San Diego State University, California, Department of Psychology.
Matz, M. (1982). Towards a Process Model for High School Algebra Errors. In Sleeman, D. & Trown, J.S. (Eds), Intelligent Tutoring System. N.Y.:Academic Press.
Maurer, S. B. (1987). New Knowledge about Errors and new Biews about Learners: What They Mean to Educators and More Educators Would Like to Know. In A. H. Schoenfeld(Ed.), Cognitive Science and mathematics Education, 165-187. N. J. : LEA.
Mayer, R.E. (1985). Educational Psychology: Cognition Approach. N.Y.: Freeman.
Merill, M. D. & Woods, N. D.(1974). Instruction Strategies: A Preliminary Taxonomy. Columbus, Ohio: Eric Information Analysis Center for Science, Mathematics, and Enviromental Education, Ohio State University.
Pirie, S. & Kieren, T. (1989). Through the Recursive Eye: Mathematical Understanding as a Dynamic Phenomenon. PME13(3), 119-126.
Pirie, S. & Kieren, T. (1996). Folding Back to Collect: Knowing You Know What You Need to Know. PME20(4), 147-154.
Pirie, S. & Martin, L (2000). The Role of Collecting in the Growth of Mathematical Understanding. Mathematics Education Research Journal, 12(2), 127-146.
Schwarz, B. and Dreyfus, T. (1995). New Actions Upon Old Objects : A New Ontological Perspective on Functions. Educational Studies in Mathematics, 29, 259-251.
Sfard, A. (1987). Two Conceptions of Mathematical Notions: Operational and Structural. In Proceedings of the Eleventh International Conference of PME, 3, 162-169.
Sfard, A. (1989). Transition from Operational to Structural Conception: the Notion of Function Revisited. In Proceedings of the Thirteenth International Conference of PME, 3, 151-158.
Sfard, A. (1991).The Dual Nature of Mathematical Conceptions: Reflections on Processes and Objects as Different Sides of The Same Coin. Educational Studies in Mathematics, 22, 1-36.
Shoenfeld, A. H. (1985). Mathematical Problem Solving. London: Academic Press.
Skemp, R. R. (1982). Symbolic Understanding. Mathematics Teaching, 99(6), 59-61.
Tall, D. (1989). Concept Images, Generic Organizers, Computers, and Curriculum Change. For the Learning of Mathematics, 9(3), 37-42.
Thomas, H. L. (1969). An Analysis of Stages in the Attainment of a Concept of Function. Doctoral Dissertation, Teachers College, Columbia University.
Vinner, S. & Ereyfus, T. (1989). Image and Definitions for the Concept of Function. Journal for Research in Mathematics Education, 20(4), 356-366.