研究生: |
蔡穎真 Ying-Chen Tsai |
---|---|
論文名稱: |
融入基本物質概念的生物課程對國中學生學習的影響 The effects of the“curriculum integrated with the concepts of basic material" to the junior high school students' learning |
指導教授: |
張永達
Chang, Yung-Ta |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 129 |
中文關鍵詞: | 基本物質 、植物的養分以及能量 、光合作用 、有意義的學習 |
英文關鍵詞: | basic material, plant nutrients and energy, photosynthesis, meaningful learning |
論文種類: | 學術論文 |
相關次數: | 點閱:134 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討在國中生物上冊第三章第三節「植物如何獲得養分」單元中,融入基本物質概念對學生學習「植物的養分以及能量」相關概念的影響。研究採準實驗研究法,研究對象為新北市某國中七年級學生四個班級,合計115人。依研究設計分為接受融入基本物質觀點的課程組(n=58)、傳統課程組(n=57)。診斷學習成效的研究工具為依據Bloom的認知層次研發的「植物的養分以及能量成就測驗」,以單因子共變數以及重複量數變異數分析,評估學生之學習成效。;此外輔以半結構晤談,了解學生對於「植物的養分以及能量概念」的理解程度。研究結果顯示:融入課程組在接受融合課程後,整體對於「植物的養分以及能量」相關概念的表現較傳統課程組為佳,後測以及延宕測皆有顯著差異;在「光合作用」概念的理解情況也優於傳統課程組。依據本研究結果,學生在學習植物如何獲得養分的單元之前,先建立對基本物質的認識,有助於其內化光合作用相關概念,習得正確的科學性概念。因此建議生物教師在教授光合作用單元中可以先建立學生對基本物質的認識,促進有意義的學習,提升學習成效。
This study aimed to explore the effects of the “curriculum integrated with the concepts of basic material” to the junior high school students’ learning on the learning unit “How plants obtain nutrients”. This study applied quasi-experimental design. The participants were 115 7thgraders from four classes at a middle school in New Taipei City. The four classes were randomly assigned to two groups-integrating basic material group (experimental group)and traditional curriculum group(control group). An achievement test based on Bloom cognitive taxonomy was developed to detect students’ understanding about “How plants obtain nutrients”. Statistic analysis ANCOVA and Repeated measures ANOVA were conducted to analyze the quantitative data. Also supplemented by semi-structured interviews to understand the students’ understanding of "plant nutrients and the energy concept ".The results showed that experimental group received the course, overall for "plant nutrients and energy" performance related concepts better than the control group, post-test and delayed test individually significant difference. In the "photosynthesis" conceptual understanding the situation was better than the control group. According to the results of this study, after establishing the understanding of the basic substance, students could internalize photosynthesis related concepts and acquire the correct scientific concepts in the plants nutrition unit. Therefore we recommend that biology teachers in teaching photosynthesis learning units can first build student understanding on the basic substance, and promote meaningful learning, enhance learning effectiveness.
中文文獻
林寶山 (1990),教學論:理論與方法。台北:五南。
林達森(2004)。運用「概念構圖科學教學模式」在高中生物科生物能量教學的實徵研究。南大學報:教育類,38(2),45-67。
邱上真 (2003)。Bruner 發現式學習理論與教學應用分析。載於張新仁(主編),學習與教學新趨勢(頁189-216)。台北:心理出版社。
邱上真 (2003)。Ausubel有意義的學習理論與教學應用。載於張新仁(主編),學習與教學新趨勢(頁217-248)。台北:心理出版社。
吳慧珠、李長燦 (2003)。Vygotsky 社會認知發展理論與教學應用分析。載於學習與教學新趨勢(頁105-158)。台北:心理出版社。
涂志銘、林秀玉 (2008)。符合建構論理念的教學策略對植物的養分與能量概念學習的成效。科學教育學刊,16(1),75-103.
陳淑敏 (1994)。Vygotsky的心理發展理論和教育。屏東師學院報,7,121-143。
郭怡立 (2001)。國民中學自然與生活科技教科書發展之研究。臺灣師範大學教育學系在職進修碩士班學位論文。
張春興 (1996)。教育心理學─三化取向的理論與實踐。台北:東華書局。
康軒版國中自然與生活科技第一冊第一本(2012):台北:康軒文教事業股份有限公司。
康軒版國中自然與生活科技第三冊第一本(2012):台北:康軒文教事業股份有限公司。
黃台珠、熊召弟、王美芬、余曉清、靳知勤、段曉林、熊同鑫(譯) (2001)。促進理解之科學教學:人本建構取向觀點。台北:心理出版社。
賈本惠 (2001)。國小五年級學童光合作用概念改變教學策略之研究。國立屏東師範學院數理教育研究所碩士。
董美津 (2004)。光合作用科學史融入國中生物教學對學生學習成效影響之研究。國立高雄師範大學生物科學研究所碩士論文。
楊鈞媛(2007)。自然科整合教學之研究-以『能量流動與物質循環』單元為例。國立台灣師範大學碩士論文。
熊召弟、王美芬、段曉林、熊同鑫(譯) (1996)。科學學習心理學。台北 : 心理出版社。(S. M. Glynn, R. H. Yeany & B.K. Britton, )
歐陽鍾仁 (1988)。科學教育概論。台北:五南圖書出版有限公司。
劉炳輝、劉世雄(2004)。全球資訊網融入教學與其教學設計之應用分析—以鷹架理論發展教學設計EXPERT模式為例。現代教育論壇,11,35-44。
劉伊祝 (2009) 。從認知發展理論淺談小五因數與倍數單元之學習策略。國教之友,60 (1),54-59。
劉新、李秀玉 (2010)。大家來找教科書的碴──「粒子與能量」觀點適時融入國中一年級生物課程必要性之探討。臺北市第十一屆教育專業創新與行動研究,294-303
鍾聖校 (1990)。認知心理學。台北:心理出版有限公司。
西文文獻
Arnone, V. C. (1971). The nature of concepts: A point of view. Theory Into Practice, 10(2), 101-108.
Arnon, D. (1982). Sunlight, earth, life: the grand design of photosynthesis. The Sciences, 22(7), 22-27.
Ausubel, D. P.(1968).Educational psychology: A cognitive viewpoint.New York: Holt, Rinehart & Winston
Barker, M., & Carr, M. (1989a). Teaching and learning about photosynthesis. Part 1: An assessment in terms of students' prior knowledge. International Journal of Science Education, 11(1), 49-56.
Barker, M., & Carr, M. (1989b). Teaching and learning about photosynthesis. Part 2: A generative learning strategy. International Journal of Science Education, 11(2), 141-152.
Barman, C., Stein, M., McNair, S., & Barman, N. (2006). Students' Ideas About Plants & Plant Growth. The American Biology Teacher, 68(2), 73-79.
Bell, B. (1985). Students' ideas about plant nutrition: what are they? Journal of Biological Education, 19(3), 213-218.
Bloom, B. S., (Eds.) (1956). Taxonomy of educational objectives: Handbook I: Cognitive domain. New York: David McKay
Bruner, J. S. (1964). The course of cognitive growth. American psychologist, 19(1), 1-15.
Cañal, P. (1999). Photosynthesis and'inverse respiration'in plants: an inevitable misconception? International Journal of Science Education, 21(4), 363-371.
Driver, R. (1994). Making sense of secondary science (Vol. 2): Psychology Press.
Eisen, Y., & Stavy, R. (1993). How to make the learning of photosynthesis more relevant. International Journal of Science Education, 15(2), 117-125.
Finley, F. N., Stewart, J., & Yarroch, W. L. (1982). Teachers' perceptions of important and difficult science content. Science Education, 66(4), 531-538.
Stavy, R., Eisen, Y., & Yaakobi, D. (1987). How students aged 13‐15 understand photosynthesis. International Journal of Science Education, 9(1), 105-115.
Stavy, R.Eisen, Y. (1992). Material Cycles in Nature. A New Approach to Teaching Photosynthesis in Junior High School. The American Biology Teacher, 54(6), 339-342.
Haslam, F., & Treagust, D. (1987). Diagnosing Secondary Students. Journal of Biological Education, 21(3), 203-211.
Littlejohn, P. (2007). Building Leaves and an Understanding of Photosynthesis. Science Scope, 8(30), 4.
Osborne, R., & Wittrock, M. (1985). The generative learning model and its implications for science education. Studies in Science Education, 12(1), 59-87.
Viiri, J., & Savinainen, A. (2008). Teaching-learning sequences: A comparison of learning demand analysis and educational reconstruction. Lat. Am. J. Phys. Educ. Vol, 2(2), 80.
Waheed, T., & Lucas, A. M. (1992). Understanding interrelated topics: Photosynthesis at age 14 +. [Article]. Journal of Biological Education, 26(3), 193-199.
Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of child psychology and psychiatry, 17(2), 89-100.