研究生: |
陳冠庭 Chen, Guan-Ting |
---|---|
論文名稱: |
利用摻雜錳於二維層狀鈣鈦礦提升激子磁光效應 Enhanced the Excitonic Magneto-Optical Effect by Doping Mn2+ in Two Dimensional Ruddlesden-Popper Hybrid Perovskite |
指導教授: |
陳家俊
Chen, Chia-Chun |
口試委員: |
陳家俊
Chen, Chia-Chun 陳俊維 Chen, Chun-Wei 王迪彥 Wang, Di-Yan 郭聰榮 Kau, Tsung-Rong 李紹先 Li, Shao-Sian |
口試日期: | 2021/07/30 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 錳摻雜鈣鈦礦 、二維Ruddlesden-Popper鈣鈦礦 、磁光效應 、電場控制 |
英文關鍵詞: | manganese ion-doped perovskite, two-dimensional Ruddlesden-Popper perovskite, magneto-optical effect, electric field control |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202101094 |
論文種類: | 學術論文 |
相關次數: | 點閱:223 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機-無機鈣鈦礦因為其良好的光電特性,使得鈣鈦礦材料在各個光電領域上均有突出的表現,除了最受矚目的太陽能電池的能源轉換效率從3.8%提升至25.2%,以及常見的發光二極體、光感應器、雷射等應用外,近年來,鈣鈦礦也逐漸踏入了磁光領域中,利用其良好的吸收係數與較大的原子序和半徑的鉛離子所引起的自旋軌道耦合產生的能階分裂,使鈣鈦礦在磁場下,對於左右旋偏振光有不同的吸收度與折射率,進而產生磁光效應。
本篇將摻雜錳離子於材料內以增強磁光效應。成功將合成出二維鈣鈦礦晶體BA2PbI4 (n=1)與BA2MAPb2I7 (n=2¬),以摻雜錳離子的方式製作成Mn-doped BA2PbI4 (n=1)與Mn-doped BA2MAPb2I7 (n=2¬),利用粉末X光繞射鑑定結構與測量吸收光譜確定能隙發現結構與能隙皆與無摻雜晶體相同,特別的是在放射光譜中,因為磁場的影響,增強了雷射激發後所產生的放射光,而無摻雜錳離子之晶體則沒有這個現象發生。最後透過測量磁性圓二色性,確實在Mn-doped BA2PbI4製作成的元件中,訊號會受到錳離子產生的內部磁場影響,有部分增強,也有部分減弱,但在零磁場的情況下,可以明顯看出訊號增強將近六倍,最後也利用外加電場達到控制磁性圓二色性訊號,進而增加材料的應用性。
未來將有機會合成出更高層數的鈣鈦礦,實現涵蓋可見光區域之錳摻雜二維鈣鈦礦,使材料在光學應用上更加廣泛。
Organic-inorganic perovskites have outstanding performance in various optoelectronic fields due to their good photoelectric properties, except for the most eye-catching solar cell energy conversion efficiency increased from 3.8% to 25.2%, and light-emitting diodes, light sensors, lasers, etc. In recent years, perovskites have gradually entered the field of magneto-optics, their good absorption coefficient, large atomic order and large radius of lead ions cause the spin-orbit coupling. This coupling makes the perovskite energy-level splitting. And under a magnetic field, the perovskite has different absorption and refractive index for left and right polarized light, which in turn produces a magneto-optical effect.
In this article, manganese ions will be incorporated into the material to enhance the magneto-optical effect. We successfully synthesized two-dimensional perovskite crystals BA2PbI4 (n=1) and BA2MAPb2I7 (n=2), and produced Mn-doped BA2PbI4 (n=1) and Mn-doped BA2MAPb2I7 (n=2) by doping with manganese ions, using powder X-ray diffraction to identify the structure and measuring the absorption spectrum to identify the energy gap, it is found that the structure and energy gap are the same as those of undoped crystals. Especially in the emission spectrum, because of the influence of the magnetic field, the laser excitation is enhanced. And there is no enhancement in undoped crystals Finally, by measuring the magnetic circular dichroism, it is true that in the components made of Mn-doped BA2PbI4, the signal will be affected by the internal magnetic field generated by manganese ions, some of which are strengthened and some are weakened. In the case of zero magnetic field, it can be clearly seen the output signal is nearly six times stronger. The external electric field is also used to control the magnetic circular dichroism signal and increase the applicability of the material.
In the future, there will be opportunities to synthesize higher layers of perovskite, realize manganese-doped two-dimensional perovskite covering the visible light region, and make the material more widely used in optical applications.
1. Zhao, X.-G., et al., Rational Design of Halide Double Perovskites for Optoelectronic Applications. Joule, 2018. 2(9): p. 1662-1673.
2. Zhou, Y., et al., Review on Methods for Improving the Thermal and Ambient Stability of Perovskite Solar Cells. Journal of Photonics for Energy, 2019. 9(4): p. 040901.
3. Hutter, E.M., et al., Direct–Indirect Character of the Bandgap in Methylammonium Lead Iodide Perovskite. Nature Materials, 2017. 16(1): p. 115-120.
4. Li, Y.-F., J. Feng, and H.-B. Sun, Perovskite Quantum Dots for Light-Emitting Devices. Nanoscale, 2019. 11(41): p. 19119-19139.
5. 陳永亮., et al., 鈣鈦礦太陽電池中的緩衝層研究進展. 物理學報, 2020. - 69(- 13): p. - 138401-1.
6. Zhao, C., D. Zhang, and C. Qin, Perovskite Light-Emitting Diodes. CCS Chemistry, 2020. 2(4): p. 859-869.
7. Grancini, G. and M.K. Nazeeruddin, Dimensional Tailoring of Hybrid Perovskites for Photovoltaics. Nature Reviews Materials, 2019. 4(1): p. 4-22.
8. Mao, L., C.C. Stoumpos, and M.G. Kanatzidis, Two-Dimensional Hybrid Halide Perovskites: Principles and Promises. Journal of the American Chemical Society, 2018. 141(3): p. 1171-1190.
9. Stoumpos, C.C., et al., Ruddlesden–Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. Chemistry of Materials, 2016. 28(8): p. 2852-2867.
10. Sisk, J., The Study of the Faraday Effect and the Faraday Rotation Ammeter, a Senior Project Thesis. arXiv preprint arXiv:2001.00454, 2019.
11. Loughran, T., et al., Enhancing the Magneto-Optical Kerr Effect through the Use of a Plasmonic Antenna. Optics Express, 2018. 26(4): p. 4738-4750.
12. Ludyk, G., Atoms in Electromagnetic Fields, in Quantum Mechanics in Matrix Form. 2018, Springer. p. 105-109.
13. Ge, J.-m., et al., Study on the Application of Optical Current Sensor for Lightning Current Measurement of Transmission Line. Sensors, 2019. 19(23): p. 5110.
14. Amemiya, T. and Y. Nakano, Single Mode Operation of 1.5-μm Waveguide Optical Isolators Based on the Nonreciprocal-loss Phenomenon. Advances in Optical and Photonic Devices, 2010: p. 117.
15. Day, D., M. Gu, and A. Smallridge, Review of Optical Data Storage. Infrared Holography for Optical Communications, 2003: p. 1-22.
16. Sabatini, R.P., et al., Solution‐Processed Faraday Rotators Using Single Crystal Lead Halide Perovskites. Advanced Science, 2020. 7(7): p. 1902950.
17. Niesner, D., et al., Structural Fluctuations Cause Spin-Split States in Tetragonal (CH3NH3) PbI3 as Evidenced by the Circular Photogalvanic Effect. Proceedings of the National Academy of Sciences, 2018. 115(38): p. 9509-9514.
18. Zhang, J., et al., Exploring Spin-Orbital Coupling Effects on Photovoltaic Actions in Sn and Pb Based Perovskite Solar Cells. Nano energy, 2017. 38: p. 297-303.
19. Chen, T.-P., et al., Strong Excitonic Magneto-Optic Effects in Two-Dimensional Organic–Inorganic Hybrid Perovskites. ACS Applied Materials & Interfaces, 2021. 13(8): p. 10279-10286.
20. Li, C., et al., Giant Zeeman Splitting for Monolayer Nanosheets at Room Temperature. Journal of the American Chemical Society, 2020. 142(49): p. 20616-20623.
21. Jiang, S., J. Shan, and K.F. Mak, Electric-Field Switching of Two-Dimensional Van Der Waals Magnets. Nature Materials, 2018. 17(5): p. 406-410.
22. Kojima, A., et al., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051.
23. Yoo, J.J., et al., Efficient Perovskite Solar Cells via Improved Carrier Management. Nature, 2021. 590(7847): p. 587-593.
24. Li, Z., et al., Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chemistry of Materials, 2016. 28(1): p. 284-292.
25. Bokdam, M., et al., Role of Polar Phonons in the Photo Excited State of Metal Halide Perovskites. Scientific Reports, 2016. 6(1): p. 1-8.
26. Stranks, S.D., et al., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 2013. 342(6156): p. 341-344.
27. Szuromi, P. and B. Grocholski, Natural and Engineered Perovskites. Science, 2017. 358(6364): p. 732-733.
28. Chu, Z., et al., Perovskite Light‐Emitting Diodes with External Quantum Efficiency Exceeding 22% via Small‐Molecule Passivation. Advanced Materials, 2021. 33(18): p. 2007169.
29. Huang, W., S. Sadhu, and S. Ptasinska, Heat-and Gas-Induced Transformation in CH3NH3PbI3 Perovskites and Its effect on The Efficiency of Solar Cells. Chemistry of Materials, 2017. 29(19): p. 8478-8485.
30. Ruddlesden, S.N. and P. Popper, New Compounds of the K2NIF4 Type. Acta Crystallographica, 1957. 10(8): p. 538-539.
31. Smith, I.C., et al., A Layered Hybrid Perovskite Solar‐Cell Absorber with Enhanced Moisture Stability. Angewandte Chemie, 2014. 126(42): p. 11414-11417.
32. Even, J., L. Pedesseau, and C. Katan, Understanding Quantum Confinement of Charge Carriers in Layered 2D Hybrid Perovskites. ChemPhysChem, 2014. 15(17): p. 3733-3741.
33. Gao, Y., et al., Electro‐Optic Modulation in Hybrid Metal Halide Perovskites. Advanced Materials, 2019. 31(16): p. 1808336.
34. Zhang, C., et al., Magnetic Field Effects in Hybrid Perovskite Devices. Nature Physics, 2015. 11(5): p. 427-434.
35. Aplet, L. and J.W. Carson, A Faraday Effect Optical Isolator. Applied Optics, 1964. 3(4): p. 544-545.
36. Qiu, Z. and S.D. Bader, Surface Magneto-Optic Kerr Effect. Review of Scientific Instruments, 2000. 71(3): p. 1243-1255.
37. Evans, M., The Experimentally Observed Optical Cotton-Mouton Effect: Evidence for the Photon's Longitudinal Magnetic Field, B (3). Modern Physics Letters B, 1993. 7(19): p. 1247-1251.
38. Villaverde, A.B., D. Donatti, and D. Bozinis, Terbium Gallium Garnet Verdet Constant Measurements with Pulsed Magnetic Field. Journal of Physics C: Solid State Physics, 1978. 11(12): p. L495.
39. Uecker, R., The Historical Development of the Czochralski Method. Journal of Crystal Growth, 2014. 401: p. 7-24.
40. Blancon, J.-C., et al., Scaling Law for Excitons in 2D Perovskite Quantum Wells. Nature Communications, 2018. 9(1): p. 1-10.
41. Huo, C., et al., Two‐dimensional metal halide perovskites: theory, synthesis, and optoelectronics. Small Methods, 2017. 1(3): p. 1600018.
42. Blancon, J.-C., et al., Extremely Efficient Internal Exciton Dissociation through Edge States in Layered 2D Perovskites. Science, 2017. 355(6331): p. 1288-1292.
43. Han, B., et al., Magnetic Circular Dichroism in Nanomaterials: New Opportunity in Understanding and Modulation of Excitonic and Plasmonic Resonances. Advanced Materials, 2020. 32(41): p. 1801491.
44. Shang, Q., et al., Unveiling Structurally Engineered Carrier Dynamics in Hybrid Quasi-Rwo-Dimensional Perovskite Thin Films toward Controllable Emission. The Journal of Physical Chemistry Letters, 2017. 8(18): p. 4431-4438.
45. Yu, J.H., et al., Giant Zeeman Splitting in Nucleation-Controlled Doped CdSe: Mn2+ Quantum Nanoribbons. Nature Materials, 2010. 9(1): p. 47-53.
46. Liu, Y., et al., New insights into Mn–Mn coupling interaction-directed Photoluminescence Quenching Mechanism in Mn2+-Doped Semiconductors. Journal of the American Chemical Society, 2020. 142(14): p. 6649-6660.
47. Manchon, A., et al., New perspectives for Rashba Spin–Orbit Coupling. Nature Materials, 2015. 14(9): p. 871-882.
48. Dutta, S.K., et al., Doping Mn2+ in Single-Crystalline Layered Perovskite Microcrystals. ACS Energy Letters, 2018. 4(1): p. 343-351.
49. NAG, A. and T. SHEIKH, Mn Doping in Centimeter-Sized Layered 2D Butylammonium Lead Bromide (BA2PbBr4) Single Crystals and Their Optical Properties. 2019.
50. Yang, Q., et al., Magnetic Field-Assisted Photoelectrochemical Water Splitting: The Photoelectrodes Have Weaker Nonradiative Recombination of Carrier. ACS Catalysis, 2021. 11(3): p. 1242-1247.