簡易檢索 / 詳目顯示

研究生: 劉啟佑
Liu, Chi-You
論文名稱: 新穎能源材料之第一原理計算模擬與研究
First-Principles Investigation and Simulation on Novel Energy Materials
指導教授: 李祐慈
Li, Yu-Tzu
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 194
中文關鍵詞: 直接甲醇燃料電池CO毒化鋰硫電池飛梭效應質子交換膜燃料電池MXene費托合成奈米碳管理論計算催化反應VASP
英文關鍵詞: Direct methanol fuel cell (DMFC), CO poison, Lithium-sulfur (Li-S) batteries, Shuttle effect, Proton exchange membrane fuel cell (PEMFC), MXene, Fischer-Tropsch synthesis (FTS), Carbon nanotube (CNT), Theoratical calculations, Catalysis, VASP
DOI URL: http://doi.org/10.6345/NTNU202000058
論文種類: 學術論文
相關次數: 點閱:194下載:37
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了降低石化燃料的使用,科學家們一直致力於尋找乾淨的替代能源,希望在未來使用液態或固態形式的能源。與此同時,也需要發展安全又具經濟效益的新能源儲存系統,最終的目標是尋找具有高能源密度、容易儲存及運輸、並且更為永續的能源。在本論文當中使用了計算化學的方法,在奈米至原子尺度下,藉由電子結構、催化性質和化學反應機構的探討,來改善並發展新的能源材料。總和來說,我們基於第一原理方法的理論模擬,針對不同能源與能源儲存系統的材料表面進行研究,包含了直接甲醇燃料電池(Direct methanol fuel cell, DMFC)、鋰硫(Li-S)電池、質子交換膜燃料電池(Proton exchange membrane fuel cell, PEMFC)和費托合成反應(Fischer-Tropsch synthesis, FTS)等領域。各部分詳細的介紹如下:

    第一部份:直接甲醇燃料電池內一氧化碳移除反應在鉑修飾多氧陽極表面(Pt2/o-MO2(110), M = Ru及Ir)的研究

    在第三章中將針對液態的直接甲醇燃料電池(DMFC)進行討論。DMFC反應過程中產生的CO或其他碳氫化合物(CmHn)很容易就毒化Pt金屬陽極表面。我們研究CO及H2O於乾淨Pt2/MO2(110)以及多氧Pt2/o-MO2(110)表面(M = Ru及Ir)上的吸附現象。結果顯示使用多氧的表面能夠有效的降低CO及H2O的吸附能,並且讓CO與表面的OH基團以更低的活化能進行類水氣轉換(WGS-like)反應,減緩CO毒化的現象。

    第二部分:鋰硫電池中含鋰多硫化物在石墨稀基底材料上的吸附結構研究分析

    第四章我們則針對鋰硫(Li-S)二次電池進行研究。近期的文獻顯示,若在陰陽極中間放置以碳為基底的材料做為中間層(interlayer),能夠有效改善含鋰多硫化物(LiPSs)的飛梭現象並增加電池壽命。我們建構了不同結構形式的異原子(N或S)取代的石墨稀表面,發現當使用含鋰的N及S共同取代石墨稀表面做為鋰硫電池中間層時,能夠讓LiPSs以完整吸附機制吸附,有效的減緩飛梭現象。

    第三部分:Pt/v-Tin+1CnT2二維材料表面邊界性質對氧氣還原反應催化的影響

    第五章中探討了質子交換膜燃料電池(PEMFC)的陰極氧氣還原反應(ORR),當使用二維Tin+1CnT2與Pt/v-Tin+1CnT2 (n = 1 ~ 3, T = O and/or F)的材料時,不同取代基對於ORR反應過電壓η的影響。我們的結果顯示F的取代基在表面上鍵結較弱且較不穩定,與實驗上觀察到脫附或被取代的現象符合。但由於F取代基在表面上時,內層的Ti與C具有較高的共價性,有利於吸附物吸附並反應,導致使用含有F取代基的表面進行ORR時可以得到較低的過電壓η。

    第四部份:利用雙金屬中心的CNT基底材料促進費托合成中C-C成鍵反應

    在費托合成(FTS)中,C-C成鍵的效率是最重要的因素。在第六章中我們模擬了雙金屬中心的M1M2/N6h-CNT (M = Fe, Co, and Mn)表面,分析其電子結構及催化活性,並考慮了三種能夠增長碳鏈長度的C-C成鍵反應:[CO + CH3]、[CO + CH2]和[CH2 + CH2]。結果顯示,CH2單體在2Co/N6h和CoMn/N6h表面上能經由一個近乎為零的活化能,順利進行C-C成鍵反應。整體來說,我們分析了雙金屬中心的系統對於在FTS中增加CO轉換率並降低C1產物比例的可行性。

    To reduce the usage of fossil fuels, scientists have constantly been searching for clearer alternative energy sources by using the liquid or gas phase power source in the future. In the meanwhile, the development of new energy storage systems is also necessary to construct a safe and economical energy network. The ultimate goal is to achieve higher energy density, easier storage, more facile transportation, and an overall more sustainable energy supply system.
    In this thesis, we apply computational chemistry to understand the catalytic chemical and electrochemical reaction mechanisms with an aim to help modify, optimize, and design new energy materials from the nano to the atomic scale. In particular, we have carried out theoretical simulations based on first-principles methods to investigate the surface chemistry on various energy source and energy storage systems, including the direct methanol fuel cell (DMFC), the lithium-sulfur (Li-S) rechargeable batteries, the proton exchange membrane fuel cell (PEMFC), and the catalyst for the Fischer-Tropsch synthesis (FTS). The specific details are summarized below:

    Part 1: CO Removing Mechanism on Pt-Decorated Oxygen-Rich Anode Surfaces (Pt2/o-MO2(110), M = Ru and Ir) in DMFC

    In Chapter 3, we focus on the liquid energy source, the direct methanol fuel cell (DMFC). The Pt metal anodes are easily toxified by CO or other hydrocarbons during operation. We apply density functional theory (DFT) to investigate the adsorption of CO and H2O on pristine Pt2/MO2(110) and the oxygen-rich Pt2/o-MO2(110) surfaces (M = Ru and Ir). The results show that the application of the oxygen-rich surfaces significantly reduces the adsorption energies of CO and H2O molecules as well as the major reaction barrier in the water-gas-shift-like (WGS-like) reactions forming CO2, leading to an efficient CO removal.

    Part 2: Adsorption Mechanisms of Lithium Polysulfides on Graphene-Based Interlayers in Lithium Sulfur Batteries

    In Chapter 4, we focus on the lithium-sulfur (Li-S) rechargeable batteries. Recent studies reveal that the carbon-based interlayer materials introduced between the cathode and anode can effectively improve the shuttle effect problem and increase the battery life cycles. Here, different types of the heteroatom-doped (N and/or S) graphene surfaces are investigated by theoretical calculations. We find that the Li-trapped N, S co-doped graphene interlayers (NSG1 and NSG2) could efficiently reduce the shuttle effect through the intact adsorption mechanism.

    Part 3: Termination Effects of Pt/v-Tin+1CnT2 MXene Surfaces for Oxygen Reduction Reaction Catalysis

    The theoretical investigation of proton exchange membrane fuel cell (PEMFC) and oxygen reduction reaction (ORR) is demonstrated in Chapter 5. We simulate the 2-D Tin+1CnTx and the Pt-decorated Pt/v-Tin+1CnTx (n = 1−3, T = O and/or F) surfaces. Different terminator effects, extent of electron transfer, and the over-potentials of ORR are discussed in this chapter. On the basis of our results, the F-terminated surfaces are predicted to show a better performance for ORR but with a lower stability than the O-terminated counterparts.

    Part 4: C-C Coupling Reactions Promoted by CNT-Supported Bimetallic Center in Fischer-Tropsch Synthesis

    C-C coupling efficiency is the most important aspect in Fischer-Tropsch synthesis (FTS). In Chapter 6, we propose a unique bimetallic center based on N-doped CNTs, the M1M2/N6h-CNT (M = Fe, Co, and Mn). We investigate three critical C-C coupling reactions, the [CO + CH3], the [CO + CH2], and the [CH2 + CH2], for the formation of long chain carbons in the FTS, and identify the dominant electronic effects for the catalytic activity. In particular, the 2Co/N6h and the CoMn/N6h surfaces are predicted to catalyze an almost barrierless C-C coupling between the CH2 fragments. The potential of such bimetallic centers is promising in increasing the CO conversion efficiency and suppressing C¬1 product ratio in FTS.

    謝誌 I 中文摘要 III Abstract VI 目錄 X 表目錄 XIII 圖目錄 XV 第一章 緒論 1 §1-1 替代能源 1 §1-2 氫經濟 4 §1-2-1 氫氣能源 4 §1-2-2 氫氣的製造 6 §1-2-3 氫氣的轉換及運輸 9 §1-2-4 氫氣的利用與燃料電池 10 §1-2-5 合成氣與費托合成 11 §1-3 甲醇經濟 14 §1-4 能源儲存 17 第二章 計算原理 21 §2-1 薛丁格方程式(Schrödinger equation) 21 §2-2 玻恩-奧本海默近似(Born-Oppenheimer approximation)與絕熱近似(Adiabatic approximation) 22 §2-3 電子結構計算 24 §2-4 Hartree-Fock方程式與平均場理論(Mean field theory) 25 §2-5 變分原理(Variational principle) 與自洽場方法(Self-consistent field method) 28 §2-6 後HF方法(Post Hartree Fock method) 30 §2-6-1 組態相互作用方法(Configuration interaction, CI) 30 §2-6-2 多組態自洽場方法(Multi-configurational self-consistent field, MCSCF) 32 §2-6-3 耦合簇方法(Coupled cluster method, CC) 33 §2-6-4 微擾理論(Perturbation theory) 34 §2-7 密度泛函理論(Density functional theory, DFT) 36 §2-7-1 湯瑪斯-費米-狄拉克模型(Thomas-Fermi-Dirac model) 36 §2-7-2 奧昂貝格-科恩定理(Hohenberg-Kohn Theorems)和科恩-沈方程式(Kohn-Sham equation) 38 §2-7-3 局域密度近似法(Local density approximation, LDA) 40 §2-7-4 廣義密度梯度近似法(Generalized gradient approximation, GGA)與meta-GGA 41 §2-7-5 絕熱系統連結法(Adiabatic connection method) 與混成泛涵(Hybrid functional) 43 §2-7-6 倫敦分散力修正(London dispersion force correction) 46 §2-8 固態表面材料計算 48 §2-8-1 空間週期性與布洛赫理論(Bloch theorm) 48 §2-8-2 快速傅立葉變換(fast Fourier transfrom, FFT)與倒空間(reciprocal space) 49 §2-8-3 全電子(all electron)計算與投影綴加波(projector augmented wave method, PAW) 51 §2-8-4 贋勢(pseudo-potential)的發展 52 §2-8-5 平面波的展開與截止動能(Cutoff energy) 54 §2-9 化學反應的計算 56 §2-9-1 過渡態理論(Transition state theory, TST)與虛頻(Imaginary frequency) 56 §2-9-2 NEB (Nudged elastic band)與CINEB (Climbing image nudged elastic band) 58 §2-9-3 熱力學產物(Thermodynamic product)與動力學產物(Kinetic product) 60 §2-10電荷處理方法 61 §2-10-1 淨原子電荷(Net atomic charge) 61 §2-10-2 分子中的原子理論(atoms in molecules, AIM) 63 §2-10-3 電子局域化函數(Electron localization function, ELF) 64 第三章 直接甲醇燃料電池內一氧化碳移除反應在鉑修飾多氧陽極表面(Pt2/o-MO2(110), M = Ru及Ir)的研究 65 §3-1 前言 65 §3-2 計算參數 69 §3-3 MO2(110)及o-MO2(110)模型 71 §3-4 Pt的吸附以及分散性測試 72 §3-5 CO與H2O的吸附 77 §3-6 吸附物的電子結構分析 79 §3-7 水氣轉換反應(WGS) 83 §3-8 本章結論 86 第四章 鋰硫電池中含鋰多硫化物在石墨稀基底材料上的吸附結構研究分析 87 §4-1 前言 87 §4-2 計算參數 91 §4-3 異原子取代的石墨烯表面及LiPS分子 93 §4-4 LiPS在不含鋰表面的吸附及電荷分析 95 §4-5 含鋰異原子取代石墨稀表面測試 101 §4-6 LiPS在含鋰表面的吸附及電荷分析 104 §4-7 含鋰表面電子結構對LiPS吸附機制的影響 109 §4-8 本章結論 114 第五章 Pt/v-Tin+1CnT2二維材料表面邊界性質對氧氣還原反應催化的影響 115 §5-1 前言 115 §5-2 計算參數 120 §5-2-1 計算參數設定 120 §5-2-2 水層修正項 122 §5-2-3 自由能修正項 123 §5-2-4 火山圖(Volcano plot)與啟動電壓(Onset potential) 124 §5-3 Tin+1CnT2表面 125 §5-4 Pt/v-Tin+1CnT2表面 128 §5-5 混成的Pt/v-Tin+1CnT2-O/F表面 132 §5-6 氧氣還原反應(ORR)中間產物的吸附 134 §5-7 自由能圖(Free energy diagram)與火山圖(Volcano plot) 138 §5-8 本章結論 142 第六章 利用雙金屬中心的CNT基底材料促進費托合成中C-C成鍵反應 143 §6-1 前言 143 §6-2 計算參數 146 §6-3 金屬中心的氮取代CNT表面形成能比較 148 §6-4 FTS中間產物的共吸附 151 §6-5 C-C成鍵反應 153 §6-6 M1M2/N6h與A1A2@M1M2/N6h表面的電子結構分析 157 §6-7 本章結論 164 第七章 總結 165 參考文獻 167 附錄一 著作列表 185 附錄二 會議參與及報告 193

    (1) Jacobson, M. Z.; Delucchi, M. A.; Bauer, Z. A. F.; Goodman, S. C.; Chapman, W. E.; Cameron, M. A.; Bozonnat, C.; Chobadi, L.; Clonts, H. A.; Enevoldsen, P.; et al. 100% Clean and Renewable Wind, Water, and Sunlight All-Sector Energy Roadmaps for 139 Countries of the World. Joule 2017, 1, 108–121.
    (2) Nicoletti, G.; Arcuri, N.; Nicoletti, G.; Bruno, R. A Technical and Environmental Comparison between Hydrogen and Some Fossil Fuels. Energy Convers. Manag. 2015, 89, 205–213.
    (3) Rajasegar, R.; Mitsingas, C. M.; Mayhew, E. K.; Liu, Q.; Lee, T.; Yoo, J. Development and Characterization of Additive-Manufactured Mesoscale Combustor Array. J. Energy Eng. 2018, 144, 04018013.
    (4) Goede, A. P. H. CO2-Neutral Fuels. EPJ Web Conf. 2015, 98, 07002.
    (5) Moradi, R.; Groth, K. M. Hydrogen Storage and Delivery: Review of the State of the Art Technologies and Risk and Reliability Analysis. Int. J. Hydrogen Energy 2019, 44, 12254–12269.
    (6) Kobayashi, H.; Hayakawa, A.; Somarathne, K. D. K. A.; Okafor, E. C. Science and Technology of Ammonia Combustion. Proc. Combust. Inst. 2019, 37, 109–133.
    (7) Turner, J.; Sverdrup, G.; Mann, M. K.; Maness, P. C.; Kroposki, B.; Ghirardi, M.; Evans, R. J.; Blake, D. Renewable Hydrogen Production. Int. J. Energy Res. 2008, 32, 379–407.
    (8) Shaikh, S. P. S.; Muchtar, A.; Somalu, M. R. A Review on the Selection of Anode Materials for Solid-Oxide Fuel Cells. Renew. Sustain. Energy Rev. 2015, 51, 1–8.
    (9) Zhou, J. H.; Zhang, Y. W. Metal-Based Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide and Nitrogen: Mechanisms, Recent Advances and Perspective. React. Chem. Eng. 2018, 3, 591–625.
    (10) Kakati, N.; Maiti, J.; Lee, S. H.; Jee, S. H.; Viswanathan, B.; Yoon, Y. S. Anode Catalysts for Direct Methanol Fuel Cells in Acidic Media: Do We Have Any Alternative for Pt or Pt-Ru? Chem. Rev. 2014, 114, 12397–12429.
    (11) Gao, W.; Zhu, Q.; Ma, D. Nanostructured Catalyst for Fischer–Tropsch Synthesis. Chinese J. Chem. 2018, 36, 798–808.
    (12) Yang, H.; Zhang, C.; Gao, P.; Wang, H.; Li, X.; Zhong, L.; Wei, W.; Sun, Y. A Review of the Catalytic Hydrogenation of Carbon Dioxide into Value-Added Hydrocarbons. Catal. Sci. Technol. 2017, 7, 4580–4598.
    (13) Shih, C. F.; Zhang, T.; Li, J.; Bai, C. Powering the Future with Liquid Sunshine. Joule 2018, 2, 1925–1949.
    (14) Simons, S. J. R. Beyond Oil and Gas: The Methanol Economy. Chem. Eng. Res. Des. 2005, 86, 2636–2639.
    (15) Sharma, S.; Ghoshal, S. K. Hydrogen the Future Transportation Fuel: From Production to Applications. Renew. Sustain. Energy Rev. 2015, 43, 1151–1158.
    (16) Sufyan, M.; Rahim, N. A.; Aman, M. M.; Tan, C. K.; Raihan, S. R. S. Sizing and Applications of Battery Energy Storage Technologies in Smart Grid System: A Review. J. Renew. Sustain. Energy 2019, 11, 014105.
    (17) Aneke, M.; Wang, M. Energy Storage Technologies and Real Life Applications – A State of the Art Review. Appl. Energy 2016, 179, 350–377.
    (18) Choi, N. S.; Chen, Z.; Freunberger, S. A.; Ji, X.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angew. Chem. Int. Ed. 2012, 51, 9994–10024.
    (19) Szabo, A.; Ostlund, N. Modern Quantum Chemistry : Introduction to Advanced Electronic Structure Theory; 1989.
    (20) Turlapov, A.V.; Yu Kagan, M. Fermi-to-Bose Crossover in a Trapped Quasi-2D Gas of Fermionic Atoms. J. Phys. Condens. Matter 2017, 29, 383004.
    (21) Kratzer, P.; Neugebauer, J. The Basics of Electronic Structure Theory for Periodic Systems. Front. Chem. 2019, 7, 106.
    (22) Vanderbilt, D. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Phys. Rev. B 1990, 41, 7892–7895.
    (23) Nan, N.; Zhu, Y.; Han, Y.; Liu, J. Molecular Modeling of Interactions between N-(Carboxymethyl)-N-Tetradecylglycine and Fluorapatite. Minerals 2019, 9, 278.
    (24) DeOliveira, L. P.; Hudebine, D.; Guillaume, D.; Verstraete, J. J. A Review of Kinetic Modeling Methodologies for Complex Processes. Oil Gas Sci. Technol. 2016, 71, 45.
    (25) Anslyn, E.; Dougherty, D. Modern Physic Organic Chemistry; 2006.
    (26) Tang, W.; Sanville, E.; Henkelman, G. A Grid-Based Bader Analysis Algorithm without Lattice Bias. J. Phys. Condens. Matter 2009, 21, 084204.
    (27) Aricò, A. S.; Srinivasan, S.; Antonucci, V. DMFCs: From Fundamental Aspects to Technology Development. Fuel Cells 2002, 1, 133–161.
    (28) Liu, R.; Luo, Z.; Wei, Q.; Zhou, X. Pt-RuO2 Nanoparticles Supported on Diaminoanthraquinone-Functionalized Carbon Nanotubes as Efficient Catalysts for Methanol Oxidation. Mater. Des. 2016, 94, 132–138.
    (29) Wang, H.; Zheng, J.; Peng, F.; Yu, H. Pt/IrO2/CNT Anode Catalyst with High Performance for Direct Methanol Fuel Cells. Catal. Commun. 2013, 33, 34–37.
    (30) Chen, A.; LaRussa, D. J.; Miller, B. Effect of the Iridium Oxide Thin Film on the Electrochemical Activity of Platinum Nanoparticles. Langmuir 2004, 20, 9695–9702.
    (31) Baglio, V.; Amin, R. S.; El-Khatib, K. M.; Siracusano, S.; D’Urso, C.; Aricò, A. S. IrO2 as a Promoter of Pt-Ru for Methanol Electro-Oxidation. Phys. Chem. Chem. Phys. 2014, 16, 10414–10418.
    (32) Shan, C. C.; Tsai, D. S.; Huang, Y. S.; Jian, S. H.; Cheng, C. L. Pt-Ir-IrO2 NT Thin-Wall Electrocatalysts Derived from IrO2 Nanotubes and Their Catalytic Activities in Methanol Oxidation. Chem. Mater. 2007, 19, 424–431.
    (33) Sakong, S.; Groß, A. The Importance of the Electrochemical Environment in the Electro-Oxidation of Methanol on Pt(111). ACS Catal. 2016, 6, 5575–5586.
    (34) Antolini, E. The Problem of Ru Dissolution from Pt-Ru Catalysts during Fuel Cell Operation: Analysis and Solutions. J. Solid State Electrochem. 2011, 15, 455–472.
    (35) Cabello-Moreno, N.; Crabb, E.; Fisher, J.; Russell, A. E.; Thompsett, D. Impact of PtRu Anode Catalyst Degradation on DMFC MEA Performance. ECS Trans. 2008, 16, 483–496.
    (36) Gancs, L.; Hakim, N.; Hult, B.; Mukerjee, S. Dissolution of Ru from PtRu Electrocatalysts and Its Consequences in DMFCs. ECS Trans. 2006, 3, 607–618.
    (37) Villullas, H. M.; Mattos-Costa, F. I.; Nascente, P. A. P.; Bulhões, L. O. S. Sol-Gel Prepared Pt-Modified Oxide Layers: Synthesis, Characterization, and Electrocatalytic Activity. Chem. Mater. 2006, 18, 5563–5570.
    (38) Sundmacher, K.; Schultz, T.; Zhou, S.; Scott, K.; Ginkel, M.; Gilles, E. D. Dynamics of the Direct Methanol Fuel Cell (DMFC): Experiments and Model-Based Analysis. Chem. Eng. Sci. 2001, 56, 333–341.
    (39) Parsons, R.; Van derNoot, T. The Oxidation of Small Organic Molecules. J. Electroanal. Chem. Interfacial Electrochem. 1988, 257, 9–45.
    (40) Huang, W.; Wang, H.; Zhou, J.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F.; Zeng, M.; et al. Highly Active and Durable Methanol Oxidation Electrocatalyst Based on the Synergy of Platinum-Nickel Hydroxide-Graphene. Nat. Commun. 2015, 6, 10035.
    (41) Davó-Quiñonero, A.; Navlani-García, M.; Lozano-Castelló, D.; Bueno-López, A.; Anderson, J. A. Role of Hydroxyl Groups in the Preferential Oxidation of CO over Copper Oxide-Cerium Oxide Catalysts. ACS Catal. 2016, 6, 1723–1731.
    (42) Maestri, M.; Livio, D.; Beretta, A.; Groppi, G. Hierarchical Refinement of Microkinetic Models: Assessment of the Role of the WGS and r-WGS Pathways in CH4 Partial Oxidation on Rh. Ind. Eng. Chem. Res. 2014, 53, 10914–10928.
    (43) Song, W.; Hensen, E. J. M. Mechanistic Aspects of the Water-Gas Shift Reaction on Isolated and Clustered Au Atoms on CeO2(110): A Density Functional Theory Study. ACS Catal. 2014, 4, 1885–1892.
    (44) Tang, Q. L.; Liu, Z. P. Identification of the Active Cu Phase in the Water-Gas Shift Reaction over Cu/ZrO2 from First Principles. J. Phys. Chem. C 2010, 114, 8423–8430.
    (45) Liu, P.; Rodriguez, J. A. Water-Gas-Shift Reaction on Metal Nanoparticles and Surfaces. J. Chem. Phys. 2007, 126, 164705.
    (46) Lee, M. J.; Kang, J. S.; Kang, Y. S.; Chung, D. Y.; Shin, H.; Ahn, C. Y.; Park, S.; Kim, M. J.; Kim, S.; Lee, K. S.; et al. Understanding the Bifunctional Effect for Removal of CO Poisoning: Blend of a Platinum Nanocatalyst and Hydrous Ruthenium Oxide as a Model System. ACS Catal. 2016, 6, 2398–2407.
    (47) Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of Water on Oxide Surfaces. J. Electroanal. Chem. 2007, 607, 83–89.
    (48) Savan, A.; Ratna, B.; Merzlikin, S.; Breitbach, B.; Ludwig, A.; Mayrhofer, K. J. J. J.; Cherevko, S.; Geiger, S.; Kasian, O.; Kulyk, N.; et al. Oxygen and Hydrogen Evolution Reactions on Ru, RuO2, Ir, and IrO2 Thin Film Electrodes in Acidic and Alkaline Electrolytes: A Comparative Study on Activity and Stability. Catal. Today 2016, 262, 170–180.
    (49) Park, S.; Shao, Y.; Liu, J.; Wang, Y. Oxygen Electrocatalysts for Water Electrolyzers and Reversible Fuel Cells: Status and Perspective. Energy Environ. Sci. 2012, 5, 9331–9344.
    (50) Ye, F.; Li, J.; Wang, X.; Wang, T.; Li, S.; Wei, H.; Li, Q.; Christensen, E. Electrocatalytic Properties of Ti/Pt-IrO2 Anode for Oxygen Evolution in PEM Water Electrolysis. Int. J. Hydrogen Energy 2010, 35, 8049–8055.
    (51) Yao, W.; Yang, J.; Wang, J.; Nuli, Y. Chemical Deposition of Platinum Nanoparticles on Iridium Oxide for Oxygen Electrode of Unitized Regenerative Fuel Cell. Electrochem. commun. 2007, 9, 1029–1034.
    (52) Gu, Y.-J.; Wong, W.-T. Electro-Oxidation of Methanol on Pt Particles Dispersed on RuO2 Nanorods. J. Electrochem. Soc. 2006, 153, A1714–A1718.
    (53) Hansen, H. A.; Man, I. C.; Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Rossmeisl, J. Electrochemical Chlorine Evolution at Rutile Oxide (110) Surfaces. Phys. Chem. Chem. Phys. 2010, 12, 283–290.
    (54) Over, H.; Knapp, M.; Lundgren, E.; Seitsonen, A. P.; Schmid, M.; Varga, P. Visualization of Atomic Processes on Ruthenium Dioxide Using Scanning Tunneling Microscopy. ChemPhysChem 2004, 5, 167–174.
    (55) Crihan, D.; Knapp, M.; Seitsonen, A. P.; Over, H. Comment on “Interaction of Hydrogen with RuO2(110) Surfaces: Activity Differences between Various Oxygen Species.” J. Phys. Chem. B 2006, 110, 22947.
    (56) Wang, H.; Schneider, W. F. Effects of Coverage on the Structures, Energetics, and Electronics of Oxygen Adsorption on RuO2(110). J. Chem. Phys. 2007, 127, 064706.
    (57) Wang, H.; Schneider, W. F.; Schmidt, D. Intermediates and Spectators in O2 Dissociation at the RuO2(110) Surface. J. Phys. Chem. C 2009, 113, 15266–15273.
    (58) Atmaca, D. O.; Düzenli, D.; Ozbek, M. O.; Onal, I. A Density Functional Theory Study of Propylene Epoxidation on RuO2(110) Surface. Appl. Surf. Sci. 2016, 385, 99–105.
    (59) Kim, Y. D.; Seitsonen, A.; Wendt, S.; Wang, J.; Fan, C.; Jacobi, K.; Over, H.; Ertl, G. Characterization of Various Oxygen Species on an Oxide Surface: RuO2(110). J. Phys. Chem. B 2001, 105, 3752–3758.
    (60) Chung, W. H.; Wang, C. C.; Tsai, D. S.; Jiang, J. C.; Cheng, Y. C.; Fan, L. J.; Yang, Y. W.; Huang, Y. S. Deoxygenation of IrO2(110) Surface: Core-Level Spectroscopy and Density Functional Theory Calculation. Surf. Sci. 2010, 604, 118–124.
    (61) Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47, 558–561.
    (62) Kresse, G.; Hafner, J. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metalamorphous-Semiconductor Transition in Germanium. Phys. Rev. B 1994, 49, 14251–14269.
    (63) Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50.
    (64) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186.
    (65) Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979.
    (66) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775.
    (67) Perdew, J. P.; Wang, Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. Phys. Rev. B 1992, 45, 13244–13249.
    (68) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B 1992, 46, 6671–6687.
    (69) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192.
    (70) Ulitsky, A.; Elber, R. A New Technique to Calculate Steepest Descent Paths in Flexible Polyatomic Systems. J. Chem. Phys. 1990, 92, 1510–1511.
    (71) Mills, G.; Jónsson, H.; Schenter, G. K. Reversible Work Transition State Theory: Application to Dissociative Adsorption of Hydrogen. Surf. Sci. 1995, 324, 305–337.
    (72) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. J. Chem. Phys. 2000, 113, 9901–9904.
    (73) Bader, R. F. W. A Quantum Theory of Molecular Structure and Its Applications. Chem. Rev. 1991, 91, 893–928.
    (74) Henkelman, G.; Arnaldsson, A.; Jónsson, H. A Fast and Robust Algorithm for Bader Decomposition of Charge Density. Comput. Mater. Sci. 2006, 36, 354–360.
    (75) Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. Improved Grid-Based Algorithm for Bader Charge Allocation. J. Comput. Chem. 2007, 28, 899–908.
    (76) Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects. Angew. Chem. Int. Ed. 2013, 52, 13186–13200.
    (77) Angulakshmi, N.; Stephan, A. M. Efficient Electrolytes for Lithium-Sulfur Batteries. Front. Energy Res. 2015, 3, 17.
    (78) Kang, W.; Deng, N.; Ju, J.; Li, Q.; Wu, D.; Ma, X.; Li, L.; Naebe, M.; Cheng, B. A Review of Recent Developments in Rechargeable Lithium-Sulfur Batteries. Nanoscale 2016, 8, 16541–16588.
    (79) Wang, B.; Alhassan, S. M.; Pantelides, S. T. Formation of Large Polysulfide Complexes during the Lithium-Sulfur Battery Discharge. Phys. Rev. Appl. 2014, 2, 034004.
    (80) Zhou, G.; Paek, E.; Hwang, G. S.; Manthiram, A. Long-Life Li/Polysulphide Batteries with High Sulphur Loading Enabled by Lightweight Three-Dimensional Nitrogen/Sulphur-Codoped Graphene Sponge. Nat. Commun. 2015, 6, 7760.
    (81) Chen, J. J.; Yuan, R. M.; Feng, J. M.; Zhang, Q.; Huang, J. X.; Fu, G.; Zheng, M.Sen; Ren, B.; Dong, Q. F. Conductive Lewis Base Matrix to Recover the Missing Link of Li2S8 during the Sulfur Redox Cycle in Li-S Battery. Chem. Mater. 2015, 27, 2048–2055.
    (82) Hou, T. Z.; Peng, H. J.; Huang, J. Q.; Zhang, Q.; Li, B. The Formation of Strong-Couple Interactions between Nitrogen-Doped Graphene and Sulfur/Lithium (Poly)Sulfides in Lithium-Sulfur Batteries. 2D Mater. 2015, 2, 014011.
    (83) Guo, Y.; Zhao, G.; Wu, N.; Zhang, Y.; Xiang, M.; Wang, B.; Liu, H.; Wu, H. Efficient Synthesis of Graphene Nanoscrolls for Fabricating Sulfur-Loaded Cathode and Flexible Hybrid Interlayer toward High-Performance Li-S Batteries. ACS Appl. Mater. Interfaces 2016, 8, 34185–34193.
    (84) Lu, S.; Cheng, Y.; Wu, X.; Liu, J. Significantly Improved Long-Cycle Stability in High-Rate Li-S Batteries Enabled by Coaxial Graphene Wrapping over Sulfur-Coated Carbon Nanofibers. Nano Lett. 2013, 13, 2485–2489.
    (85) Zhou, G.; Yin, L. C.; Wang, D. W.; Li, L.; Pei, S.; Gentle, I. R.; Li, F.; Cheng, H. M. Fibrous Hybrid of Graphene and Sulfur Nanocrystals for High-Performance Lithium-Sulfur Batteries. ACS Nano 2013, 7, 5367–5375.
    (86) Wang, X.; Zhang, Z.; Qu, Y.; Lai, Y.; Li, J. Nitrogen-Doped Graphene/Sulfur Composite as Cathode Material for High Capacity Lithium-Sulfur Batteries. J. Power Sources 2014, 256, 361–368.
    (87) Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked Double-Layer Templated Graphene for High-Rate Lithium-Sulphur Batteries. Nat. Commun. 2014, 5, 3410.
    (88) Cheng, X. B.; Huang, J. Q.; Zhang, Q.; Peng, H. J.; Zhao, M. Q.; Wei, F. Aligned Carbon Nanotube/Sulfur Composite Cathodes with High Sulfur Content for Lithium-Sulfur Batteries. Nano Energy 2014, 4, 65–72.
    (89) Chang, C. H.; Chung, S. H.; Manthiram, A. Ultra-Lightweight PANiNF/MWCNT-Functionalized Separators with Synergistic Suppression of Polysulfide Migration for Li-S Batteries with Pure Sulfur Cathodes. J. Mater. Chem. A 2015, 3, 18829–18834.
    (90) Jand, S. P.; Chen, Y.; Kaghazchi, P. Comparative Theoretical Study of Adsorption of Lithium Polysulfides (Li2Sx) on Pristine and Defective Graphene. J. Power Sources 2016, 308, 166–171.
    (91) Hou, T. Z.; Xu, W. T.; Chen, X.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Lithium Bond Chemistry in Lithium-Sulfur Batteries. Angew. Chem. Int. Ed. 2017, 56, 8178–8182.
    (92) Zhou, G.; Tian, H.; Jin, Y.; Tao, X.; Liu, B.; Zhang, R.; Seh, Z. W.; Zhuo, D.; Liu, Y.; Sun, J.; et al. Catalytic Oxidation of Li2S on the Surface of Metal Sulfides for Li−S Batteries. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 840–845.
    (93) Chen, X.; Peng, H. J.; Zhang, R.; Hou, T. Z.; Huang, J. Q.; Li, B.; Zhang, Q. An Analogous Periodic Law for Strong Anchoring of Polysulfides on Polar Hosts in Lithium Sulfur Batteries: S- or Li-Binding on First-Row Transition-Metal Sulfides? ACS Energy Lett. 2017, 2, 795–801.
    (94) Tao, X.; Wan, J.; Liu, C.; Wang, H.; Yao, H.; Zheng, G.; Seh, Z. W.; Cai, Q.; Li, W.; Zhou, G.; et al. Balancing Surface Adsorption and Diffusion of Lithium-Polysulfides on Nonconductive Oxides for Lithium-Sulfur Battery Design. Nat. Commun. 2016, 7, 11203.
    (95) Song, J.; Su, D.; Xie, X.; Guo, X.; Bao, W.; Shao, G.; Wang, G. Immobilizing Polysulfides with MXene-Functionalized Separators for Stable Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2016, 8, 29427–29433.
    (96) Fan, C. Y.; Liu, S. Y.; Li, H. H.; Wang, H. F.; Wang, H. C.; Wu, X. L.; Sun, H. Z.; Zhang, J. P. Synergistic Design of Cathode Region for the High-Energy-Density Li-S Batteries. ACS Appl. Mater. Interfaces 2016, 8, 28689–28699.
    (97) Pu, J.; Shen, Z.; Zheng, J.; Wu, W.; Zhu, C.; Zhou, Q.; Zhang, H.; Pan, F. Multifunctional Co3S4@sulfur Nanotubes for Enhanced Lithium-Sulfur Battery Performance. Nano Energy 2017, 37, 7–14.
    (98) Liang, G.; Wu, J.; Qin, X.; Liu, M.; Li, Q.; He, Y. B.; Kim, J. K.; Li, B.; Kang, F. Ultrafine TiO2 Decorated Carbon Nanofibers as Multifunctional Interlayer for High-Performance Lithium-Sulfur Battery. ACS Appl. Mater. Interfaces 2016, 8, 23105–23113.
    (99) Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance Lithium-Sulfur Batteries. Angew. Chem. Int. Ed. 2015, 54, 3907–3911.
    (100) Zhu, X.; Jiang, X.; Ai, X.; Yang, H.; Cao, Y. A Highly Thermostable Ceramic-Grafted Microporous Polyethylene Separator for Safer Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2015, 7, 24119–24126.
    (101) Xu, W.; Wang, Z.; Shi, L.; Ma, Y.; Yuan, S.; Sun, L.; Zhao, Y.; Zhang, M.; Zhu, J. Layer-by-Layer Deposition of Organic-Inorganic Hybrid Multilayer on Microporous Polyethylene Separator to Enhance the Electrochemical Performance of Lithium-Ion Battery. ACS Appl. Mater. Interfaces 2015, 7, 20678–20686.
    (102) Balach, J.; Singh, H. K.; Gomoll, S.; Jaumann, T.; Klose, M.; Oswald, S.; Richter, M.; Eckert, J.; Giebeler, L. Synergistically Enhanced Polysulfide Chemisorption Using a Flexible Hybrid Separator with N and S Dual-Doped Mesoporous Carbon Coating for Advanced Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2016, 8, 14586–14595.
    (103) Su, Y. S.; Manthiram, A. Lithium-Sulphur Batteries with a Microporous Carbon Paper as a Bifunctional Interlayer. Nat. Commun. 2012, 3, 1166.
    (104) Huang, J. Q.; Zhang, Q.; Wei, F. Multi-Functional Separator/Interlayer System for High-Stable Lithium-Sulfur Batteries: Progress and Prospects. Energy Storage Mater. 2015, 1, 127–145.
    (105) Kim, J. H.; Seo, J.; Choi, J.; Shin, D.; Carter, M.; Jeon, Y.; Wang, C.; Hu, L.; Paik, U. Synergistic Ultrathin Functional Polymer-Coated Carbon Nanotube Interlayer for High Performance Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2016, 8, 20092–20099.
    (106) Pang, Q.; Tang, J.; Huang, H.; Liang, X.; Hart, C.; Tam, K. C.; Nazar, L. F. A Nitrogen and Sulfur Dual-Doped Carbon Derived from Polyrhodanine@Cellulose for Advanced Lithium-Sulfur Batteries. Adv. Mater. 2015, 27, 6021–6028.
    (107) Hou, T. Z.; Chen, X.; Peng, H. J.; Huang, J. Q.; Li, B. Q.; Zhang, Q.; Li, B. Design Principles for Heteroatom-Doped Nanocarbon to Achieve Strong Anchoring of Polysulfides for Lithium-Sulfur Batteries. Small 2016, 12, 3283–3291.
    (108) Yin, L. C.; Liang, J.; Zhou, G. M.; Li, F.; Saito, R.; Cheng, H. M. Understanding the Interactions between Lithium Polysulfides and N-Doped Graphene Using Density Functional Theory Calculations. Nano Energy 2016, 25, 203–210.
    (109) Liang, J.; Yin, L.; Tang, X.; Yang, H.; Yan, W.; Song, L.; Cheng, H. M.; Li, F. Kinetically Enhanced Electrochemical Redox of Polysulfides on Polymeric Carbon Nitrides for Improved Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2016, 8, 25193–25201.
    (110) Fan, C. Y.; Yuan, H. Y.; Li, H. H.; Wang, H. F.; Li, W. L.; Sun, H. Z.; Wu, X. L.; Zhang, J. P. The Effective Design of a Polysulfide-Trapped Separator at the Molecular Level for High Energy Density Li-S Batteries. ACS Appl. Mater. Interfaces 2016, 8, 16108–16115.
    (111) Huang, J. Q.; Zhuang, T. Z.; Zhang, Q.; Peng, H. J.; Chen, C. M.; Wei, F. Permselective Graphene Oxide Membrane for Highly Stable and Anti-Self-Discharge Lithium-Sulfur Batteries. ACS Nano 2015, 9, 3002–3011.
    (112) Yi, G. S.; Sim, E. S.; Chung, Y. C. Effect of Lithium-Trapping on Nitrogen-Doped Graphene as an Anchoring Material for Lithium-Sulfur Batteries: A Density Functional Theory Study. Phys. Chem. Chem. Phys. 2017, 19, 28189–28194.
    (113) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
    (114) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
    (115) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465.
    (116) Antony, A.; Hakanoglu, C.; Asthagiri, A.; Weaver, J. F. Dispersion-Corrected Density Functional Theory Calculations of the Molecular Binding of n-Alkanes on Pd(111) and PdO(101). J. Chem. Phys. 2012, 136, 054702.
    (117) Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787–1799.
    (118) Xu, J.; Su, D.; Zhang, W.; Bao, W.; Wang, G. A Nitrogen-Sulfur Co-Doped Porous Graphene Matrix as a Sulfur Immobilizer for High Performance Lithium-Sulfur Batteries. J. Mater. Chem. A 2016, 4, 17381–17393.
    (119) Duan, J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catal. 2015, 5, 5207–5234.
    (120) Yuan, X.; Liu, B.; Hou, H.; Zeinu, K.; He, Y.; Yang, X.; Xue, W.; He, X.; Huang, L.; Zhu, X.; et al. Facile Synthesis of Mesoporous Graphene Platelets with in Situ Nitrogen and Sulfur Doping for Lithium-Sulfur Batteries. RSC Adv. 2017, 7, 22567–22577.
    (121) Garraín, D.; Lechón, Y.; Rúa, C. dela. Polymer Electrolyte Membrane Fuel Cells (PEMFC) in Automotive Applications: Environmental Relevance of the Manufacturing Stage. Smart Grid Renew. Energy 2011, 2, 68–74.
    (122) Shao, M.; Chang, Q.; Dodelet, J. P.; Chenitz, R. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem. Rev. 2016, 116, 3594–3657.
    (123) Sui, S.; Wang, X.; Zhou, X.; Su, Y.; Riffat, S.; Liu, C. jun. A Comprehensive Review of Pt Electrocatalysts for the Oxygen Reduction Reaction: Nanostructure, Activity, Mechanism and Carbon Support in PEM Fuel Cells. J. Mater. Chem. A 2017, 5, 1808–1825.
    (124) Li, J.; Yin, H.-M.; Li, X.-B.; Okunishi, E.; Shen, Y.-L.; He, J.; Tang, Z.-K.; Wang, W.-X.; Yücelen, E.; Li, C.; et al. Surface Evolution of a Pt-Pd-Au Electrocatalyst for Stable Oxygen Reduction. Nat. Energy 2017, 2, 17111.
    (125) Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Energy and Fuels from Electrochemical Interfaces. Nat. Mater. 2016, 16, 57–69.
    (126) Mahesh, I.; Sarkar, A. Self-Restraining Electroless Deposition for Shell@Core Particles and Influence of Lattice Parameter on the ORR Activity of Pt(Shell)@Pd(Core)/C Electrocatalyst. J. Phys. Chem. C 2018, 122, 9283–9291.
    (127) Morozan, A.; Jousselme, B.; Palacin, S. Low-Platinum and Platinum-Free Catalysts for the Oxygen Reduction Reaction at Fuel Cell Cathodes. Energy Environ. Sci. 2011, 4, 1238–1254.
    (128) Groenenboom, M. C.; Anderson, R. M.; Horton, D. J.; Basdogan, Y.; Roeper, D. F.; Policastro, S. A.; Keith, J. A. Doped Amorphous Ti Oxides to Deoptimize Oxygen Reduction Reaction Catalysis. J. Phys. Chem. C 2017, 121, 16825–16830.
    (129) Chuong, N. D.; Thanh, T. D.; Kim, N. H.; Lee, J. H. Hierarchical Heterostructures of Ultrasmall Fe2O3-Encapsulated MoS2/N-Graphene as an Effective Catalyst for Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2018, 10, 24523–24532.
    (130) Bhange, S. N.; Unni, S. M.; Kurungot, S. Graphene with Fe and S Coordinated Active Centers: An Active Competitor for the Fe-N-C Active Center for Oxygen Reduction Reaction in Acidic and Basic PH Conditions. ACS Appl. Energy Mater. 2018, 1, 368–376.
    (131) Zhou, S.; Yang, X.; Pei, W.; Liu, N.; Zhao, J. Heterostructures of MXenes and N-Doped Graphene as Highly Active Bifunctional Electrocatalysts. Nanoscale 2018, 10, 10876–10883.
    (132) Kim, D.; Zussblatt, N. P.; Chung, H. T.; Becwar, S. M.; Zelenay, P.; Chmelka, B. F. Highly Graphitic Mesoporous Fe,N-Doped Carbon Materials for Oxygen Reduction Electrochemical Catalysts. ACS Appl. Mater. Interfaces 2018, 10, 25337–25349.
    (133) Dilpazir, S.; He, H.; Li, Z.; Wang, M.; Lu, P.; Liu, R.; Xie, Z.; Gao, D.; Zhang, G. Cobalt Single Atoms Immobilized N-Doped Carbon Nanotubes for Enhanced Bifunctional Catalysis toward Oxygen Reduction and Oxygen Evolution Reactions. ACS Appl. Energy Mater. 2018, 1, 3283–3291.
    (134) Ren, G.; Gao, L.; Teng, C.; Li, Y.; Yang, H.; Shui, J.; Lu, X.; Zhu, Y.; Dai, L. Ancient Chemistry “Pharaoh’s Snakes” for Efficient Fe-/N-Doped Carbon Electrocatalysts. ACS Appl. Mater. Interfaces 2018, 10, 10778–10785.
    (135) Luo, G.; Wang, Y.; Li, Y. Two-Dimensional Iron-Porphyrin Sheet as a Promising Catalyst for Oxygen Reduction Reaction: A Computational Study. Sci. Bull. 2017, 62, 1337–1343.
    (136) Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Origin of the Electrocatalytic Oxygen Reduction Activity of Graphene-Based Catalysts: A Roadmap to Achieve the Best Performance. J. Am. Chem. Soc. 2014, 136, 4394–4403.
    (137) Guo, D.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active Sites of Nitrogen-Doped Carbon Materials for Oxygen Reduction Reaction Clarified Using Model Catalysts. Science 2016, 351, 361–365.
    (138) Liu, S.; Huang, S. Theoretical Insights into the Activation of O2 by Pt Single Atom and Pt4 Nanocluster on Functionalized Graphene Support: Critical Role of Pt Positive Polarized Charges. Carbon N. Y. 2017, 115, 11–17.
    (139) Liu, C. Y.; Li, E. Y. Adsorption Mechanisms of Lithium Polysulfides on Graphene-Based Interlayers in Lithium Sulfur Batteries. ACS Appl. Energy Mater. 2018, 1, 455–463.
    (140) Liang, Y.; Yoo, H. D.; Li, Y.; Shuai, J.; Calderon, H. A.; Robles Hernandez, F. C.; Grabow, L. C.; Yao, Y. Interlayer-Expanded Molybdenum Disulfide Nanocomposites for Electrochemical Magnesium Storage. Nano Lett. 2015, 15, 2194–2202.
    (141) Niu, W.; Marcus, K.; Zhou, L.; Li, Z.; Shi, L.; Liang, K.; Yang, Y. Enhancing Electron Transfer and Electrocatalytic Activity on Crystalline Carbon-Conjugated g-C3N4. ACS Catal. 2018, 8, 1926–1931.
    (142) Kim, Y.; Koo, D.; Ha, S.; Jung, S. C.; Yim, T.; Kim, H.; Oh, S. K.; Kim, D. M.; Choi, A.; Kang, Y.; et al. Two-Dimensional Phosphorene-Derived Protective Layers on a Lithium Metal Anode for Lithium-Oxygen Batteries. ACS Nano 2018, 12, 4419–4430.
    (143) Li, Z.; Niu, B.; Liu, J.; Li, J.; Kang, F. Rechargeable Aluminum-Ion Battery Based on MoS2 Microsphere Cathode. ACS Appl. Mater. Interfaces 2018, 10, 9451–9459.
    (144) Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.
    (145) Xie, X.; Chen, S.; Ding, W.; Nie, Y.; Wei, Z. An Extraordinarily Stable Catalyst: Pt NPs Supported on Two-Dimensional Ti3C2X2(X = OH, F) Nanosheets for Oxygen Reduction Reaction. Chem. Commun. 2013, 49, 10112–10114.
    (146) Xiao, Y.; Hwang, J. Y.; Sun, Y. K. Transition Metal Carbide-Based Materials: Synthesis and Applications in Electrochemical Energy Storage. J. Mater. Chem. A 2016, 4, 10379–10393.
    (147) Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv. Mater. 2013, 26, 992–1005.
    (148) Khazaei, M.; Ranjbar, A.; Arai, M.; Sasaki, T.; Yunoki, S. Electronic Properties and Applications of MXenes: A Theoretical Review. J. Mater. Chem. C 2017, 5, 2488–2503.
    (149) Xie, Y.; Kent, P. R. C. Hybrid Density Functional Study of Structural and Electronic Properties of Functionalized TiN+1Xn (X=C, N) Monolayers. Phys. Rev. B - Condens. Matter Mater. Phys. 2013, 87, 235441.
    (150) Chen, C.; Ji, X.; Xu, K.; Zhang, B.; Miao, L.; Jiang, J. Prediction of T- and H-Phase Two-Dimensional Transition-Metal Carbides/Nitrides and Their Semiconducting–Metallic Phase Transition. ChemPhysChem 2017, 18, 1897–1902.
    (151) Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat. Rev. Mater. 2017, 2, 16098.
    (152) Han, M.; Yin, X.; Li, X.; Anasori, B.; Zhang, L.; Cheng, L.; Gogotsi, Y. Laminated and Two-Dimensional Carbon-Supported Microwave Absorbers Derived from MXenes. ACS Appl. Mater. Interfaces 2017, 9, 20038–20045.
    (153) Hong Ng, V. M.; Huang, H.; Zhou, K.; Lee, P. S.; Que, W.; Xu, J. Z.; Kong, L. B. Recent Progress in Layered Transition Metal Carbides and/or Nitrides (MXenes) and Their Composites: Synthesis and Applications. J. Mater. Chem. A 2017, 5, 3039–3068.
    (154) Zhang, X.; Zhang, Z.; Zhou, Z. MXene-Based Materials for Electrochemical Energy Storage. J. Energy Chem. 2018, 27, 73–85.
    (155) Lai, S.; Jeon, J.; Jang, S. K.; Xu, J.; Choi, Y. J.; Park, J. H.; Hwang, E.; Lee, S. Surface Group Modification and Carrier Transport Properties of Layered Transition Metal Carbides (Ti2CTx, T: -OH, -F and -O). Nanoscale 2015, 7, 19390–19396.
    (156) Hu, M.; Hu, T.; Li, Z.; Yang, Y.; Cheng, R.; Yang, J.; Cui, C.; Wang, X. Surface Functional Groups and Interlayer Water Determine the Electrochemical Capacitance of Ti3C2Tx MXene. ACS Nano 2018, 12, 3578–3586.
    (157) Yu, X. F.; Li, Y. C.; Cheng, J. B.; Liu, Z. B.; Li, Q. Z.; Li, W. Z.; Yang, X.; Xiao, B. Monolayer Ti2CO2: A Promising Candidate for NH3 Sensor or Capturer with High Sensitivity and Selectivity. ACS Appl. Mater. Interfaces 2015, 7, 13707–13713.
    (158) Sim, E. S.; Yi, G. S.; Je, M.; Lee, Y.; Chung, Y. C. Understanding the Anchoring Behavior of Titanium Carbide-Based MXenes Depending on the Functional Group in Li-S Batteries: A Density Functional Theory Study. J. Power Sources 2017, 342, 64–69.
    (159) Zhao, Y.; Zhao, J. Functional Group-Dependent Anchoring Effect of Titanium Carbide-Based MXenes for Lithium-Sulfur Batteries: A Computational Study. Appl. Surf. Sci. 2017, 412, 591–598.
    (160) Zhang, X.; Lei, J.; Wu, D.; Zhao, X.; Jing, Y.; Zhou, Z. A Ti-Anchored Ti2CO2 Monolayer (MXene) as a Single-Atom Catalyst for CO Oxidation. J. Mater. Chem. A 2016, 4, 4871–4876.
    (161) Zhang, X.; Zhang, Z.; Li, J.; Zhao, X.; Wu, D.; Zhou, Z. Ti2CO2 MXene: A Highly Active and Selective Photocatalyst for CO2 Reduction. J. Mater. Chem. A 2017, 5, 12899–12903.
    (162) Moses-Debusk, M.; Yoon, M.; Allard, L. F.; Mullins, D. R.; Wu, Z.; Yang, X.; Veith, G.; Stocks, G. M.; Narula, C. K. CO Oxidation on Supported Single Pt Atoms: Experimental and Ab Initio Density Functional Studies of CO Interaction with Pt Atom on θ-Al2O3(010) Surface. J. Am. Chem. Soc. 2013, 135, 12634–12645.
    (163) Wang, C.; Gu, X. K.; Yan, H.; Lin, Y.; Li, J.; Liu, D.; Li, W. X.; Lu, J. Water-Mediated Mars-Van Krevelen Mechanism for CO Oxidation on Ceria-Supported Single-Atom Pt1 Catalyst. ACS Catal. 2017, 7, 887–891.
    (164) Back, S.; Lim, J.; Kim, N. Y.; Kim, Y. H.; Jung, Y. Single-Atom Catalysts for CO2 Electroreduction with Significant Activity and Selectivity Improvements. Chem. Sci. 2017, 8, 1090–1096.
    (165) Li, F.; Li, Y.; Zeng, X. C.; Chen, Z. Exploration of High-Performance Single-Atom Catalysts on Support M1/FeOx for CO Oxidation via Computational Study. ACS Catal. 2015, 5, 544–552.
    (166) Li, T.; Liu, J.; Song, Y.; Wang, F. Photochemical Solid-Phase Synthesis of Platinum Single Atoms on Nitrogen-Doped Carbon with High Loading as Bifunctional Catalysts for Hydrogen Evolution and Oxygen Reduction Reactions. ACS Catal. 2018, 8, 8450–8458.
    (167) Wang, A.; Li, J.; Zhang, T. Heterogeneous Single-Atom Catalysis. Nat. Rev. Chem. 2018, 2, 65–81.
    (168) Xie, P.; Pu, T.; Nie, A.; Hwang, S.; Purdy, S. C.; Yu, W.; Su, D.; Miller, J. T.; Wang, C. Nanoceria-Supported Single-Atom Platinum Catalysts for Direct Methane Conversion. ACS Catal. 2018, 8, 4044–4048.
    (169) Sun, X.; Han, P.; Li, B.; Zhao, Z. Tunable Catalytic Performance of Single Pt Atom on Doped Graphene in Direct Dehydrogenation of Propane by Rational Doping: A Density Functional Theory Study. J. Phys. Chem. C 2018, 122, 1570–1576.
    (170) Tak, Y. J.; Yang, S.; Lee, H.; Lim, D. H.; Soon, A. Examining the Rudimentary Steps of the Oxygen Reduction Reaction on Single-Atomic Pt Using Ti-Based Non-Oxide Supports. J. Ind. Eng. Chem. 2018, 58, 208–215.
    (171) Cong, W. T.; Tang, Z.; Zhao, X. G.; Chu, J. H. Enhanced Magnetic Anisotropies of Single Transition-Metal Adatoms on a Defective MoS2 Monolayer. Sci. Rep. 2015, 5, 9361.
    (172) Kwon, Y.; Kim, T. Y.; Kwon, G.; Yi, J.; Lee, H. Selective Activation of Methane on Single-Atom Catalyst of Rhodium Dispersed on Zirconia for Direct Conversion. J. Am. Chem. Soc. 2017, 139, 17694–17699.
    (173) Liu, C.-Y.; Chang, C.-C.; Ho, J.-J.; Li, E. Y. First-Principles Study on CO Removing Mechanism on Pt-Decorated Oxygen-Rich Anode Surfaces (Pt2/o-MO2(110), M = Ru and Ir) in DMFC. J. Phys. Chem. C 2017, 121, 9825–9832.
    (174) Ling, C.; Li, Q.; Du, A.; Wang, J. Computation-Aided Design of Single-Atom Catalysts for One-Pot CO2 Capture, Activation, and Conversion. ACS Appl. Mater. Interfaces 2018, 10, 36866–36872.
    (175) Yeh, C. H.; Ho, J. J. A First-Principle Calculation of Sulfur Oxidation on Metallic Ni(111) and Pt(111), and Bimetallic Ni@Pt(111) and Pt@Ni(111) Surfaces. ChemPhysChem 2012, 13, 3194–3203.
    (176) Persson, I.; Näslund, L. Å.; Halim, J.; Barsoum, M. W.; Darakchieva, V.; Palisaitis, J.; Rosen, J.; Persson, P. O. Å. On the Organization and Thermal Behavior of Functional Groups on Ti3C2 MXene Surfaces in Vacuum. 2D Mater. 2018, 5, 015002.
    (177) Hu, T.; Li, Z.; Hu, M.; Wang, J.; Hu, Q.; Li, Q.; Wang, X. Chemical Origin of Termination-Functionalized MXenes: Ti3C2T2 as a Case Study. J. Phys. Chem. C 2017, 121, 19254–19261.
    (178) Sang, X.; Xie, Y.; Lin, M. W.; Alhabeb, M.; VanAken, K. L.; Gogotsi, Y.; Kent, P. R. C.; Xiao, K.; Unocic, R. R. Atomic Defects in Monolayer Titanium Carbide (Ti3C2Tx) MXene. ACS Nano 2016, 10, 9193–9200.
    (179) Bliem, R.; Van DerHoeven, J. E. S.; Hulva, J.; Pavelec, J.; Gamba, O.; DeJongh, P. E.; Schmid, M.; Blaha, P.; Diebold, U.; Parkinson, G. S. Dual Role of CO in the Stability of Subnano Pt Clusters at the Fe3O4(001) Surface. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 8921–8926.
    (180) Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-Atom Catalysis of CO Oxidation Using Pt1/FeOX. Nat. Chem. 2011, 3, 634–641.
    (181) Fan, G.; Li, X.; Ma, Y.; Zhang, Y.; Wu, J.; Xu, B.; Sun, T.; Gao, D.; Bi, J. Magnetic, Recyclable PtyCo1−y/Ti3C2X2 (X = O, F) Catalyst: A Facile Synthesis and Enhanced Catalytic Activity for Hydrogen Generation from the Hydrolysis of Ammonia Borane. New J. Chem. 2017, 41, 2793–2799.
    (182) Foppa, L.; Iannuzzi, M.; Copéret, C.; Comas-Vives, A. Facile Fischer-Tropsch Chain Growth from CH2 Monomers Enabled by the Dynamic CO Adlayer. ACS Catal. 2019, 9, 6571–6582.
    (183) Liu, H.; Zhang, R.; Ling, L.; Wang, Q.; Wang, B.; Li, D. Insight into the Preferred Formation Mechanism of Long-Chain Hydrocarbons in Fischer-Tropsch Synthesis on Hcp Co(10-11) Surfaces from DFT and Microkinetic Modeling. Catal. Sci. Technol. 2017, 7, 3758–3776.
    (184) Zhuo, M.; Tan, K. F.; Borgna, A.; Saeys, M. Density Functional Theory Study of the CO Insertion Mechanism for Fischer-Tropsch Synthesis over Co Catalysts. J. Phys. Chem. C 2009, 113, 8357–8365.
    (185) Ail, S. S.; Dasappa, S. Biomass to Liquid Transportation Fuel via Fischer Tropsch Synthesis - Technology Review and Current Scenario. Renew. Sustain. Energy Rev. 2016, 58, 267–286.
    (186) Gholami, Z.; Asmawati Mohd Zabidi, N.; Gholami, F.; Ayodele, O. B.; Vakili, M. The Influence of Catalyst Factors for Sustainable Production of Hydrocarbons via Fischer-Tropsch Synthesis. Rev. Chem. Eng. 2017, 33, 337–358.
    (187) Zhang, Q.; Deng, W.; Wang, Y. Recent Advances in Understanding the Key Catalyst Factors for Fischer-Tropsch Synthesis. J. Energy Chem. 2013, 22, 27–38.
    (188) Liu, J.; Guo, Z.; Childers, D.; Schweitzer, N.; Marshall, C. L.; Klie, R. F.; Miller, J. T.; Meyer, R. J. Correlating the Degree of Metal-Promoter Interaction to Ethanol Selectivity over MnRh/CNTs CO Hydrogenation Catalysts. J. Catal. 2014, 313, 149–158.
    (189) Shi, X.; Yu, H.; Gao, S.; Li, X.; Fang, H.; Li, R.; Li, Y.; Zhang, L.; Liang, X.; Yuan, Y. Synergistic Effect of Nitrogen-Doped Carbon-Nanotube-Supported Cu–Fe Catalyst for the Synthesis of Higher Alcohols from Syngas. Fuel 2017, 210, 241–248.
    (190) Chen, B.; Zhang, X.; Chen, W.; Wang, D.; Song, N.; Qian, G.; Duan, X.; Yang, J.; Chen, D.; Yuan, W.; et al. Tailoring of Fe/MnK-CNTs Composite Catalysts for the Fischer-Tropsch Synthesis of Lower Olefins from Syngas. Ind. Eng. Chem. Res. 2018, 57, 11554–11560.
    (191) Chen, Q.; Qian, W.; Zhang, H.; Ma, H.; Sun, Q.; Ying, W. Effect of Li Promoter on FeMn/CNTs for Light Olefins from Syngas. Catal. Commun. 2019, 124, 92–96.
    (192) Gao, S.; Li, X.; Li, Y.; Yu, H.; Zhang, F.; Sun, Y.; Fang, H.; Zhang, X.; Liang, X.; Yuan, Y. Effects of Gallium as an Additive on Activated Carbon-Supported Cobalt Catalysts for the Synthesis of Higher Alcohols from Syngas. Fuel 2018, 230, 194–201.
    (193) Torres Galvis, H. M.; Koeken, A. C. J.; Bitter, J. H.; Davidian, T.; Ruitenbeek, M.; Dugulan, A. I.; DeJong, K. P. Effects of Sodium and Sulfur on Catalytic Performance of Supported Iron Catalysts for the Fischer-Tropsch Synthesis of Lower Olefins. J. Catal. 2013, 303, 22–30.
    (194) Li, Z.; Zhong, L.; Yu, F.; An, Y.; Dai, Y.; Yang, Y.; Lin, T.; Li, S.; Wang, H.; Gao, P.; et al. Effects of Sodium on the Catalytic Performance of CoMn Catalysts for Fischer − Tropsch to Olefin Reactions. ACS Catal. 2017, 7, 3622–3631.
    (195) Cheng, Y.; Lin, J.; Xu, K.; Wang, H.; Yao, X.; Pei, Y.; Yan, S.; Qiao, M.; Zong, B. Fischer-Tropsch Synthesis to Lower Olefins over Potassium-Promoted Reduced Graphene Oxide Supported Iron Catalysts. ACS Catal. 2016, 6, 389–399.
    (196) Qin, H.; Zhou, Y.; Bai, J.; Zhu, B.; Ni, Z.; Wang, L.; Liu, W.; Zhou, Q.; Li, X. Lignin-Derived Thin-Walled Graphitic Carbon-Encapsulated Iron Nanoparticles: Growth, Characterization, and Applications. ACS Sustain. Chem. Eng. 2017, 5, 1917–1923.
    (197) Xie, J.; Paalanen, P. P.; vanDeelen, T. W.; Weckhuysen, B. M.; Louwerse, M. J.; deJong, K. P. Promoted Cobalt Metal Catalysts Suitable for the Production of Lower Olefins from Natural Gas. Nat. Commun. 2019, 10, 167.
    (198) Badoga, S.; Vosoughi, V.; Dalai, A. K. Performance of Promoted Iron/CNT Catalyst for Fischer-Tropsch Synthesis: Influence of Pellet Shapes and Binder Loading. Energy and Fuels 2017, 31, 12633–12644.
    (199) Tao, Z.; Yang, Y.; Zhang, C.; Li, T.; Wang, J.; Wan, H.; Xiang, H.; Li, Y. Effect of Calcium Promoter on a Precipitated Iron-Manganese Catalyst for Fischer-Tropsch Synthesis. Catal. Commun. 2006, 7, 1061–1066.
    (200) Ma, G.; Wang, X.; Xu, Y.; Wang, Q.; Wang, J.; Lin, J.; Wang, H.; Dong, C.; Zhang, C.; Ding, M. Enhanced Conversion of Syngas to Gasoline-Range Hydrocarbons over Carbon Encapsulated Bimetallic FeMn Nanoparticles. ACS Appl. Energy Mater. 2018, 1, 4304–4312.
    (201) Pedersen, E. Ø.; Blekkan, E. A. Noble Metal Promoted CoMn Catalysts for Fischer–Tropsch Synthesis. Catal. Letters 2018, 148, 1027–1034.
    (202) Escalona, N.; Medina, C.; García, R.; Reyes, P. Fischer Tropsch Reaction from a Mixture Similar to Biosyngas. Influence of Promoters on Surface and Catalytic Properties of Co/SiO2 Catalysts. Catal. Today 2009, 143, 76–79.
    (203) Shariati, J.; Haghtalab, A.; Mosayebi, A. Fischer–Tropsch Synthesis Using Co and Co-Ru Bifunctional Nanocatalyst Supported on Carbon Nanotube Prepared via Chemical Reduction Method. J. Energy Chem. 2019, 28, 9–22.
    (204) James, O. O.; Chowdhury, B.; Maity, S. Comparative TPR and TPD Studies of Cu and Ca Promotion on Fe-Zn- and Fe-Zn-Zr-Based Fischer-Tropsch Catalysts. Oil Gas Sci. Technol. 2015, 70, 511–519.
    (205) Wang, S.; Yin, Q.; Guo, J.; Zhu, L. Influence of Ni Promotion on Liquid Hydrocarbon Fuel Production over Co/CNT Catalysts. Energy and Fuels 2013, 27, 3961–3968.
    (206) Luque, R.; DeLa Osa, A. R.; Campelo, J. M.; Romero, A. A.; Valverde, J. L.; Sanchez, P. Design and Development of Catalysts for Biomass-To-Liquid-Fischer-Tropsch (BTL-FT) Processes for Biofuels Production. Energy Environ. Sci. 2012, 5, 5186–5202.
    (207) Karimi, A.; Nasernejad, B.; Rashidi, A. M.; Tavasoli, A.; Pourkhalil, M. Functional Group Effect on Carbon Nanotube (CNT)-Supported Cobalt Catalysts in Fischer-Tropsch Synthesis Activity, Selectivity and Stability. Fuel 2014, 117, 1045–1051.
    (208) Dvořák, F.; Camellone, M. F.; Tovt, A.; Tran, N. D.; Negreiros, F. R.; Vorokhta, M.; Skála, T.; Matolínová, I.; Mysliveček, J.; Matolín, V.; et al. Creating Single-Atom Pt-Ceria Catalysts by Surface Step Decoration. Nat. Commun. 2016, 7, 10801.
    (209) Zhu, C.; Fu, S.; Song, J.; Shi, Q.; Su, D.; Engelhard, M. H.; Li, X.; Xiao, D.; Li, D.; Estevez, L.; et al. Self-Assembled Fe-N-Doped Carbon Nanotube Aerogels with Single-Atom Catalyst Feature as High-Efficiency Oxygen Reduction Electrocatalysts. Small 2017, 13, 1603407.
    (210) Yang, S.; Tak, Y. J.; Kim, J.; Soon, A.; Lee, H. Support Effects in Single-Atom Platinum Catalysts for Electrochemical Oxygen Reduction. ACS Catal. 2017, 7, 1301–1307.
    (211) Lin, J.; Wang, A.; Qiao, B.; Liu, X.; Yang, X.; Wang, X.; Liang, J.; Li, J.; Liu, J.; Zhang, T. Remarkable Performance of Ir1/FeOx Single-Atom Catalyst in Water Gas Shift Reaction. J. Am. Chem. Soc. 2013, 135, 15314–15317.
    (212) Lu, Z.; Yang, M.; Ma, D.; Lv, P.; Li, S.; Yang, Z. CO Oxidation on Mn-N4 Porphyrin-like Carbon Nanotube: A DFT-D Study. Appl. Surf. Sci. 2017, 426, 1232–1240.
    (213) Zhang, S.; Wu, Q.; Tang, L.; Hu, Y.; Wang, M.; Zhao, J.; Li, M.; Han, J.; Liu, X.; Wang, H. Individual High-Quality N-Doped Carbon Nanotubes Embedded with Nonprecious Metal Nanoparticles toward Electrochemical Reaction. ACS Appl. Mater. Interfaces 2018, 10, 39757–39767.
    (214) Chan, Y.Te; Tsai, M. K. CO2 Reduction Catalysis by Tunable Square-Planar Transition-Metal Complexes: A Theoretical Investigation Using Nitrogen-Substituted Carbon Nanotube Models. Phys. Chem. Chem. Phys. 2017, 19, 29068–29076.
    (215) Titov, A.; Zapol, P.; Kral, P.; Liu, D. J.; Iddir, H.; Baishya, K.; Curtiss, L. A. Catalytic Fe-XN Sites in Carbon Nanotubes. J. Phys. Chem. C 2009, 113, 21629–21634.
    (216) Wang, Y.; Mao, J.; Meng, X.; Yu, L.; Deng, D.; Bao, X. Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications. Chem. Rev. 2019, 119, 1806–1854.
    (217) Kattel, S.; Atanassov, P.; Kiefer, B. Stability, Electronic and Magnetic Properties of in-Plane Defects in Graphene: A First-Principles Study. J. Phys. Chem. C 2012, 116, 8161–8166.
    (218) Yang, W.; Xu, X.; Hou, L.; Li, Z.; Deng, B.; Tian, J.; Yang, F.; Li, Y. Nitrogen-Enriched Hollow Carbon Spheres Coupled with Efficient Co-Nx-C Species as Cathode Catalysts for Triiodide Reduction in Dye-Sensitized Solar Cells. ACS Sustain. Chem. Eng. 2019, 7, 2679–2685.
    (219) Holby, E. F.; Wu, G.; Zelenay, P.; Taylor, C. D. Structure of Fe-Nx-C Defects in Oxygen Reduction Reaction Catalysts from First-Principles Modeling. J. Phys. Chem. C 2014, 118, 14388–14393.
    (220) Hunter, M. A.; Fischer, J. M. T. A.; Yuan, Q.; Hankel, M.; Searles, D. J. Evaluating the Catalytic Efficiency of Paired, Single-Atom Catalysts for the Oxygen Reduction Reaction. ACS Catal. 2019, 9, 7660–7667.
    (221) Caldeweyher, E.; Bannwarth, C.; Grimme, S. Extension of the D3 Dispersion Coefficient Model. J. Chem. Phys. 2017, 147, 034112.
    (222) Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S. A Generally Applicable Atomic-Charge Dependent London Dispersion Correction. J. Chem. Phys. 2019, 150, 154122.
    (223) Deng, D.; Chen, X.; Yu, L.; Wu, X.; Liu, Q.; Liu, Y.; Yang, H.; Tian, H.; Hu, Y.; Du, P.; et al. Chemistry: A Single Iron Site Confined in a Graphene Matrix for the Catalytic Oxidation of Benzene at Room Temperature. Sci. Adv. 2015, 1, e1500462.
    (224) Li, H. J.; Chang, C. C.; Ho, J. J. Density Functional Calculations to Study the Mechanism of the Fischer-Tropsch Reaction on Fe(111) and W(111) Surfaces. J. Phys. Chem. C 2011, 115, 11045–11055.
    (225) Pham, T. H.; Qi, Y.; Yang, J.; Duan, X.; Qian, G.; Zhou, X.; Chen, D.; Yuan, W. Insights into Hägg Iron-Carbide-Catalyzed Fischer-Tropsch Synthesis: Suppression of CH4 Formation and Enhancement of C-C Coupling on χ-Fe5C2 (510). ACS Catal. 2015, 5, 2203–2208.
    (226) Chen, C.; Wang, Q.; Wang, G.; Hou, B.; Jia, L.; Li, D. Mechanistic Insight into the C2 Hydrocarbons Formation from Syngas on Fcc-Co(111) Surface: A DFT Study. J. Phys. Chem. C 2016, 120, 9132–9147.
    (227) Qi, Y.; Yang, J.; Holmen, A.; Chen, D. Investigation of C1 + C1 Coupling Reactions in Cobalt-Catalyzed Fischer-Tropsch Synthesis by a Combined DFT and Kinetic Isotope Study. Catalysts 2019, 9, 551.
    (228) Zhang, R.; Kang, L.; Liu, H.; He, L.; Wang, B. Insight into the C-C Chain Growth in Fischer-Tropsch Synthesis on HCP Co(10-10) Surface: The Effect of Crystal Facets on the Preferred Mechanism. Comput. Mater. Sci. 2018, 145, 263–279.
    (229) Zhang, R.; Wen, G.; Adidharma, H.; Russell, A. G.; Wang, B.; Radosz, M.; Fan, M. C2 Oxygenate Synthesis via Fischer-Tropsch Synthesis on Co2C and Co/Co2C Interface Catalysts: How to Control the Catalyst Crystal Facet for Optimal Selectivity. ACS Catal. 2017, 7, 8285–8295.
    (230) Wang, B.; Liang, D.; Zhang, R.; Ling, L. Crystal Facet Dependence for the Selectivity of C2 Species over Co2C Catalysts in the Fischer-Tropsch Synthesis. J. Phys. Chem. C 2018, 122, 29249–29258.
    (231) Liu, P.; Liang, D.; Zhang, R.; Wang, B. The Formations of C2 Species and CH4 over the Co2C Catalyst in Fischer-Tropsch Synthesis: The Effect of Surface Termination on Product Selectivity. Comput. Mater. Sci. 2020, 172, 109345.

    下載圖示
    QR CODE